14 resultados para vibrational structure
Resumo:
The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO22+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340+/-0.010 eV. The fragmentation of energy selected CO22+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from similar to38.7 to similar to41 eV above the ground state of neutral CO2 has been observed in the experimental time window of similar to0.1-2.3 mus with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO++O+ formation in indirect dissociative double photoionization below the threshold for formation of CO22+. The threshold for CO++O+ formation is found to be 35.56+/-0.10 eV or lower, which is more than 2 eV lower than previous measurements. (C) 2005 American Institute of Physics.
Resumo:
The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.
Resumo:
The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO 2 2+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340±0.010 eV. The fragmentation of energy selected CO 2 2+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from ∼38.7 to ∼41 eV above the ground state of neutral CO 2 has been observed in the experimental time window of ∼0.1-2.3 μs with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO ++O + formation in indirect dissociative double photoionization below the threshold for formation of CO 2 2+. The threshold for CO ++O + formation is found to be 35.56±0.10 eV or lower, which is more than 2 eV lower than previous measurements.
Resumo:
Background To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year. Method The oat grains were kept as raw (control) or heated in an air-draft oven (dry roasting: DO) at 120 °C for 60 min and under microwave irradiation (MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy. Results The results showed that rumen degradability of dry matter, protein and starch was significantly lower (P <0.05) for MIO compared to control and DO treatments. A higher protein α-helix to β-sheet and a lower amide I to starch area ratio were observed for MIO compared to DO and/or raw treatment. A negative correlation (−0.99, P < 0.01) was observed between α-helix or amide I to starch area ratio and dry matter. A positive correlation (0.99, P < 0.01) was found between protein β-sheet and crude protein. Conclusion The results reveal that oat grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.
Resumo:
We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z) (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fed at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(l) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(l)-Fe(l) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride, Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(l) species, but cannot bond with the Fe(l)-Fe(l) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (1) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(l)-Fe(l) complexes; and (iii) in the e(g)-2pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).
Resumo:
A broad survey of harmonic dynamics in AB(2) clusters with up to N = 3000 atoms is performed using a simple rigid ion model, with ionic radii selected to give rutile as the ground state structure for the corresponding extended crystal. The vibrational density of states is already close to its bulk counterpart for N similar to 500, with characteristic differences due to surfaces, edges and vertices. Two methods are proposed and tested to map the cluster vibrational states onto the rutile crystal phonons. The net distinction between infrared (IR) active and Raman active modes that exists for bulk rutile becomes more and more blurred as the cluster size is reduced. It is found that, in general, the higher the IR activity of the mode, the more this is affected by the system size. IR active modes are found to spread over a wide frequency range for the finite clusters. Simple models based on either a crude confinement constraint or surface pressure arguments fail to reproduce the results of the calculations. The effects of the stoichiometry and dielectric properties of the surrounding medium on the vibrational properties of the clusters are also investigated.
Resumo:
Density functional calculations have been performed for ring isomers of sulfur with up to 18 atoms, and for chains with up to ten atoms. There are many isomers of both types, and the calculations predict the existence of new forms. Larger rings and chains are very flexible, with numerous local energy minima. Apart from a small, but consistent overestimate in the bond lengths, the results reproduce experimental structures where known. Calculations are also performed on the energy surfaces of S8 rings, on the interaction between a pair of such rings, and the reaction between one S8 ring and the triplet diradical S8 chain. The results for potential energies, vibrational frequencies, and reaction mechanisms in sulfur rings and chains provide essential ingredients for Monte Carlo simulations of the liquid–liquid phase transition. The results of these simulations will be presented in Part II.
Resumo:
Density functional calculations, using B3LPY/6-31G(d) methods, have been used to investigate the conformations and vibrational (Raman) spectra of three short-chain fatty acid methyl esters (FAMEs) with the formula CnH2nO2 (n = 3-5). In all three FAMEs, the lowest energy conformer has a simple 'all-trans' structure but there are other conformers, with different torsions about the backbone, which lie reasonably close in energy to the global minimum. One result of this is that the solid samples we studied do not appear to consist entirely of the lowest energy conformer. Indeed, to account for the 'extra' bands that were observed in the Raman data but were not predicted for the all-trans conformer, it was necessary to add-in contributions from other conformers before a complete set of vibrational assignments could be made. Provided this was done, the agreement between experimental Raman frequencies and 6-31G(d) values (after scaling) was excellent, RSD = 12.6 cm(-1). However, the agreement between predicted and observed intensities was much less satisfactory. To confirm the validity of the approach followed by the 6-3 1 G(d) basis set, we used a larger basis set, Sadlej pVTZ, and found that these calculations gave accurate Raman intensities and simulated spectra (summed from two different conformers) that were in quantitative agreement with experiment. In addition, the unscaled Sadlej pVTZ, and the scaled 6-3 1 G(d) calculations gave the same vibrational mode assignments for all bands in the experimental data. This work provides the foundation for calculations on longer-chain FAMEs (which are closer to those found as triglycerides in edible fats and oils) because it shows that scaled 6-3 1 G(d) calculations give equally accurate frequency predictions, and the same vibrational mode assignments, as the much more CPU-expensive Sadlej pVTZ basis set calculations.
Resumo:
Few-cycle laser pulses are used to "pump and probe" image the vibrational wavepacket dynamics of a HD+ molecular ion. The quantum dephasing and revival structure of the wavepacket are mapped experimentally with time-resolved photodissociation imaging. The motion of the molecule is simulated using a quantum-mechanical model predicting the observed structure. The coherence of the wavepacket is controlled by varying the duration of the intense laser pulses. By means of a Fourier transform analysis both the periodicity and relative population of the vibrational states of the excited molecular ion have been characterized.
Resumo:
We present a general method to construct a set of local rectilinear vibrational coordinates for a nonlinear molecule whose reference structure does not necessarily correspond to a stationary point of the potential-energy surface. We show both analytically and with a numerical example that the vibrational coordinates satisfy Eckart's conditions. In addition, we find that the Watson Hamiltonian provides a fairly robust description even of highly excited vibrational states of triatomic molecules, except for a few states of large amplitude motion sampling the singular region of the Hamiltonian. These states can be identified through slow convergence.
Resumo:
An exact and general approach to study molecular vibrations is provided by the Watson Hamiltonian. Within this framework, it is customary to omit the contribution of the terms with the vibrational angular momentum and the Watson term, especially for the study of large systems. We discover that this omission leads to results which depend on the choice of the reference structure. The self-consistent solution proposed here yields a geometry that coincides with the quantum averaged geometry of the Watson Hamiltonian and appears to be a promising way for the computation of the vibrational spectra of strongly anharmonic systems.
Resumo:
[Ag(NH3)(2)](ClO4) is obtained from a solution of AgClO4 in cone. ammonia as colourless single crystals (orthorhombic, Pnmn, Z = 4, a = 795.2(1) pm, b 617.7(1) pm, c = 1298.2(2) pm, R-all = 0.0494). The structure consists of linearly coordinated cations, [Ag(NH3)(2)](+), stacked in a staggered conformation and of tetrahedral (ClO4)(-) anions. A first order phase transition was observed between 210 and 200 K and the crystal structure of the low-temperature modification (monoclinic. P2/m, Z = 4, a = 789.9(5) pm, b = 604.1(5) pm, c = 1290.4(5) pm, beta = 97.436(5)degrees, at 170 K, R-all = 0.0636) has also been solved. Spectroscopic investigations (IR/Raman) have been carried out and the assignment of the spectra is discussed.
Resumo:
The structure of a Pt(111) electrode after treatment in an electrolyte and subsequent transfer to an UHV chamber was investigated ex situ by combined low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopy (AES). Treatment of the sample in a CO saturated 0.1 M HClO solution at potentials between -0.2 and 0.2 V versus Ag/AgCl caused a maximum CO coverage of about 0.75 as probed by cyclic voltammetry, which dropped by partial desorption to about 0.25 upon transfer to the UHV chamber. This adlayer exhibited a (distorted) 3×3 R30° pattern by RHEED (but not with LEED) exhibiting an average domain size of 2.3 nm at room temperature. This is identified with the same phase reported before from gas phase studies, as also corroborated by the similarities of the vibrational spectroscopic data. The same structure (albeit even more poorly ordered) was found after dissociative adsorption of methanol.
Resumo:
The structure of the (2 X 1)CO-Pd(110) surface phase has been determined by LEED intensity analysis. The CO molecule is found to be adsorbed in an atop site, tilted by 11-degrees +/- 4-degrees with respect to the surface normal, with a C-O bond length of 1.16 +/- 0.04 angstrom. Interestingly, the C-O vibrational frequency for this system (2003 cm-1) is virtually identical to the frequency observed for the (2 X 1)CO-Ni(110) surface phase (1998 cm-1) which a previous LEED study has shown involves bridge bound CO molecules. The result indicates that care must be taken in assigning site symmetries on the basis of C-O stretching frequencies alone.