16 resultados para tooling
Resumo:
The influence of manufacturing tolerance on direct operating cost (DOC) is extrapolated from an engine nacelle to be representative of an entire aircraft body. Initial manufacturing tolerance data was obtained from the shop floor at Bombardier Aerospace Shorts, Belfast while the corresponding costs were calculated according to various recurring elements such as basic labour and overtime labour, rework, concessions, and redeployment; along with the non-recurrent costs due to tooling and machinery, etc. The relation of tolerance to cost was modelled statistically so that the cost impact of tolerance change could be ascertained. It was shown that a relatively small relaxation in the assembly and fabrication tolerances of the wetted surfaces resulted in reduced costs of production that lowered aircraft DOC, as the incurred drag penalty was predicted and taken into account during the optimisation process.
Resumo:
What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools process optimizations or a combination Of Such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.
Resumo:
The primary goal of this work is to quantify any bene?ts that the use of digital manufacturing methods can offer when used upstream from production, for manufacturing process design, and tool development. Learning at this stage of product development is referred to as management learning. Animated build simulations have been used to develop build procedures and tooling for a panel assembly for the new Bombardier CRJ1000 (Canadair Regional Jet, 100 seat). When the jig format was developed, its simulated performance was compared to that of current CRJ700/900 panel builds to identify and quantify any improvements in terms of tooling cost and panel build time. When comparing like-for-like functions between existing CRJ700/900 (Canadair Regional Jet, 70/90 seat) and the
CRJ1000 tooling, it was predicted that the digitally assisted improvements had brought about a 4.9% reduction in jig cost. An evaluation of the build process for the CRJ1000 uplock panel predicted a 5.2% reduction in the assembly time. In addition to the improvement of existing tooling functions, new jig functionality was added so that both the drilling and riveting functions could be carried out in a single jig for the new RJ1000 panel.
Resumo:
This paper presents an analytical model for the prediction of the elastic behaviour of plain-weave fabric composites. The fabric is a hybrid plain-weave with different materials and undulations in the warp and weft directions. The derivation of the effective material properties is based on classical laminate theory (CLT).
The theoretical predictions have been compared with experimental results and predictions using alternative models available in the literature. Composite laminates were manufactured using the resin infusion under flexible tooling (RIFT) process and tested under tension and in-plane shear loading to validate the model. A good correlation between theoretical and experimental results for the prediction of in-plane properties was obtained. The limitations of the existing theoretical models based on classical laminate theory (CLT) for predicting the out-of-plane mechanical properties are presented and discussed.
Resumo:
A numerical and experimental investigation on the mode-I intralaminar toughness of a hybrid plain weave composite laminate manufactured using resin infusion under flexible tooling (RIFT) process is presented in this paper. The pre-cracked geometries consisted of overheight compact tension (OCT), double edge notch (DEN) and centrally cracked four-point-bending (4PBT) test specimens. The position as well as the strain field ahead of the crack tip during the loading stage was determined using a digital speckle photogrammetry system. The limitation on the applicability of the standard data reduction schemes for the determination of intralaminar toughness of composite materials is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of the stress intensity factor for composites. The method accounts for material anisotropy and finite specimen dimension effects regardless of the geometry. The approach has been validated for alternative non-standard specimen geometries. A comparison between different methods currently available for computing the intralaminar fracture toughness in composite laminates is presented and a good agreement between numerical and experimental results using the proposed methodology was obtained.
Resumo:
Pre-consolidated carbon fibre-reinforced polyphenylene sulphide (CF/PPS) laminates were
thermoformed into V-shaped parts via designed out of autoclave thermoforming experiments.
The different processing conditions tested in the experiment have resulted in final
part angles whose differences ranged from 2.087 to 3.431 from the original mould angle.
The test results show that processing conditions influenced finished part dimensions as the
final sample angles were found to decrease relative to the tooling dimensions, as mould
temperature increases. Higher mould temperature conditions produce thinner parts due
to the thermal expansion of mould tools. The mould temperature of 170C, which can
produce parts with high degree of crystallinity as well as small size of crystal, has been
established as the optimal thermoforming condition for CF/PPS composites.
Resumo:
With the advancement of flexible fixture and flexible tooling, mixed production has become possible for aircraft assembly as the manufacturing processes of different aircraft/sub-assembly models are similar. However, it is a great challenge to model the problem and provide a practical solution due to the low volume and complex constraints of aircraft assemblies. To tackle this problem, this work proposes a methodology for designing the mixed production system, and a new scheduling approach is proposed by combined backward and forward scheduling methods. These methods are validated through a real-life industrial case study. Simulation results show that the number of workstations and the cycle time for making a fuselage can be reduced by 50% and 39% respectively with the newly designed mixed-model system.
Resumo:
In this study, 39 sets of hard turning (HT) experimental trials were performed on a Mori-Seiki SL-25Y (4-axis) computer numerical controlled (CNC) lathe to study the effect of cutting parameters in influencing the machined surface roughness. In all the trials, AISI 4340 steel workpiece (hardened up to 69 HRC) was machined with a commercially available CBN insert (Warren Tooling Limited, UK) under dry conditions. The surface topography of the machined samples was examined by using a white light interferometer and a reconfirmation of measurement was done using a Form Talysurf. The machining outcome was used as an input to develop various regression models to predict the average machined surface roughness on this material. Three regression models - Multiple regression, Random Forest, and Quantile regression were applied to the experimental outcomes. To the best of the authors’ knowledge, this paper is the first to apply Random Forest or Quantile regression techniques to the machining domain. The performance of these models was compared to each other to ascertain how feed, depth of cut, and spindle speed affect surface roughness and finally to obtain a mathematical equation correlating these variables. It was concluded that the random forest regression model is a superior choice over multiple regression models for prediction of surface roughness during machining of AISI 4340 steel (69 HRC).
Resumo:
Carbon fibre reinforced polymers (CFRP) are increasingly being used in the aerospace, automotive and defence industry due to their high specific stiffness and good corrosion resistance. In a modern aircraft, 50-60% of its structure is made up of CFRP material while the remainder is mostly a combination of metallic alloys (typically aluminium or titanium alloys). Mechanical fastening (bolting or riveting) of CFRP and metallic components has thus created a pressing requirement of drilling several thousand holes per aircraft. Drilling of stacks in a single-shot not only saves time, but also ensures proper alignment when fasteners are inserted, achieving tighter geometric tolerances. However, this requirement poses formidable manufacturing challenges due to the fundamental differences in the material properties of CFRP and metals e.g. a drill bit entering into the stack encounters brittle and abrasive CFRP material as well as the plastic behaviour of the metallic alloy, making the drilling process highly non-linear.
Over the past few years substantial efforts have been made in this direction and majority of the research has tried to establish links between how the process parameters (feed, depth of cut, cutting speed), tooling (geometry, material and coating) and the wear of the cutting tool affect the hole quality. Similarly, multitudes of investigations have been conducted to determine the effects of non-traditional drilling methods (orbital, helical and vibration assisted drilling), cutting zone temperatures and efficiency of chip extraction on the hole quality and rate of tool wear during single shot drilling of CFRP/alloy stacks.
In a timely effort, this paper aims at reviewing the manufacturing challenges and barriers faced when drilling CFRP/alloy stacks and to summarise various factors influencing the drilling process while detailing the advances made in this fertile research area of single-shot drilling of stack materials. A survey of the key challenges associated with avoiding workpiece damage and the effect these challenges have on tool design and process optimisation is presented. An in depth critique of suitable hole making methods and their aptness for commercialisation follows. The paper concludes by summarising the future work required to achieve repeatable, high quality single shot drilled holes in CFRP/alloy stacks.
Resumo:
The thermoforming industry has been relatively slow to embrace modern measurement technologies. As a result researchers have struggled to develop accurate thermoforming simulations as some of the key aspects of the process remain poorly understood. For the first time, this work reports the development of a prototype multivariable instrumentation system for use in thermoforming. The system contains sensors for plug force, plug displacement, air pressure and temperature, plug temperature, and sheet temperature. Initially, it was developed to fit the tooling on a laboratory thermoforming machine, but later its performance was validated by installing it on a similar industrial tool. Throughout its development, providing access for the various sensors and their cabling was the most challenging task. In testing, all of the sensors performed well and the data collected has given a powerful insight into the operation of the process. In particular, it has shown that both the air and plug temperatures stabilize at more than 80C during the continuous thermoforming of amorphous polyethylene terephthalate (aPET) sheet at 110C. The work also highlighted significant differences in the timing and magnitude of the cavity pressures reached in the two thermoforming machines. The prototype system has considerable potential for further development.