14 resultados para thiophene
Resumo:
Substituted chiral thiophene 1-oxides and their cycloadducts of variable enantiopurity have been isolated as products of dioxygenase-catalysed sulfoxidation of the corresponding thiophenes using intact cells of Pseudomonas putida; thermal racemization (Delta G(double dagger) = 25.1 kcal mol(-1)) of the enantiopure metabolite (1R)-2-methylbenzo[b]thiophene 1-oxide has been observed.
Resumo:
Enzymatic cis-dihydroxylation of benzo[b]thiophene, benzo[b]furan and several methyl substituted derivatives was found to occur in both the carbocyclic and heterocyclic rings. Relative and absolute configurations and enantiopurities of the resulting dihydrodiols were determined. Hydrogenation of the alkene bond in carbocyclic cis-dihydrodiols and ring-opening epimerization/reduction reactions of heterocyclic cis/trans-dihydrodiols were also studied. The relatively stable heterocyclic dihydrodiols of benzo[b]thiophene and benzo[b]furan showed a strong preference for the trans configuration in aqueous solutions. The 2,3-dihydrodiol metabolite of benzo[b]thiophene was utilized as a precursor in the chemoenzymatic synthesis of the unstable arene oxide, benzo[b]thiophene 2,3-oxide.
Resumo:
Three novel dinucleotide analogues of nicotinamide adenine dinucleotide (NAD+) have been synthesised from -ribonolactone. These compounds incorporate a thiophene moiety in place of nicotinamide and are hydrolytically stable. They have been evaluated as inhibitors of adenosine diphosphate ribosyl cyclase, glutamate dehydrogenase and Sir2 acyltransferase activities. Enzyme specificity and a high level of inhibition was observed for the dehydrogenase.
Resumo:
The synthesis of [Rh-2(COD)(2)(dppm)(mu(2)-Cl)] BF4 (1) (COD) 1,5-cyclooctadiene, dppm) bis(diphenylphosphino) methane) from simple precursors is reported. This is a rare example of a dirhodium complex with an open [Rh-2(mu(2)-dppm)(mu(2)-Cl)] core. The complex has been used to affect the hydrogenation of styrene and benzo[b] thiophene with total selectivity and competitive rates of reaction. The recycling of the catalyst has been achieved by the entrapment of 1 in silica by a sol-gel method to produce a recyclable solid catalyst.
Resumo:
Conducting polymers suffer from folds and kinks because of random nucleation and solvation of a free radical cation to yield a cross linked/disordered polymer and therefore a solvent free electrochemical polymerization in a room temperature melt medium is adopted to yield a high degree polymer with high electronic conductivity. Electropolymerization of thiophene was performed on platinum/ITO substrates using cyclic voltametry or galvenostatic mode in chloroaluminate room temperature melt medium to obtain a reddish brown free standing film which can be peeled off from the electrode surface after a minimum of 10 cycles. The conductivity was found to be around 102 S/cm. The degree of polymerization was calculated to be around 44 from IR studies. A layered structure supportive for high degree of polymerization was witnessed from potential step technique. From UV spectra the charge carriers were found to be bipolarons. The morphology of the film was found to be crystalline from SEM and XRD studies. Capacitative impedance properties for doped samples were interpreted from impedance spectroscopy.
Resumo:
Bacterial dioxygenase-catalysed cis-dihydroxylation of the tetracyclic arenes benzo[c]phenanthrene 2, and the isosteric compounds benzo[b]naphtho[1,2-d]furan 8, and benzo[b]naphtho[1,2-d]thiophene 9, has been found to occur exclusively at fjord-region bonds. The resulting cis-dihydrodiols 7, 10 and 11 were found to be enantiopure and of similar absolute configuration. cis-Dihydroxylation was also observed in the pseudo-fjord region of the 8,9,10,11-tetrahydro-precursors (12 and 13) of benzo[b]naphtho[1,2-d]furan 8, and benzo[b]naphtho[1,2-d]thiophene 9, to yield the corresponding enantiopure hexahydro cis-diols 14 and 15. A novel tandem cis-dihydroxylation and bis-desaturation of the tetrahydro-substrate, tetrahydrobenzo[b]naphtho[1,2-d]thiophene 13, catalysed by biphenyl dioxygenase, was found to yield the fjord-region cis-dihydrodiol 17 of benzo[b]naphtho[1,2-d]thiophene 9.
Resumo:
Asymmetric heteroatom oxidation of benzo[b]thiophenes to yield the corresponding sulfoxides was catalysed by toluene dioxygenase (TDO), naphthalene dioxygenase (NDO) and styrene monooxygenase (SMO) enzymes present in P. putida mutant and E. coli recombinant whole cells. TDO-catalysed oxidation yielded the relatively unstable benzo[b] thiophene sulfoxide; its dimerization, followed by dehydrogenation, resulted in the isolation of stable tetracyclic sulfoxides as minor products with cis-dihydrodiols being the dominant metabolites. SMO mainly catalysed the formation of enantioenriched benzo[b] thiophene sulfoxide and 2-methyl benzo[b] thiophene sulfoxides which racemized at ambient temperature. The barriers to pyramidal sulfur inversion of 2- and 3-methyl benzo[b] thiophene sulfoxide metabolites, obtained using TDO and NDO as biocatalysts, were found to be ca.: 25-27 kcal mol(-1). The absolute configurations of the benzo[b] thiophene sulfoxides were determined by ECD spectroscopy, X-ray crystallography and stereochemical correlation. A site-directed mutant E. coli strain containing an engineered form of NDO, was found to change the regioselectivity toward preferential oxidation of the thiophene ring rather than the benzene ring.
Resumo:
The biphenyl dioxygenase-catalyzed asymmetric mono-cis-dihydroxylation of the tetracyclic arenes chrysene 1A, benzo[c]phenanthridine 1B, and benzo[b]naphtho[2,1-d]thiophene 1C, has been observed to occur exclusively at the bay or pseudo-bay region using the bacterium Sphingomonas yanoikuyae B8/36. The mono-cis-dihydrodiol derivatives 2A and 2C, obtained from chrysene 1A by oxidation at the 3,4-bond (2A) and benzo[b]naphtho[2,1-d]thiophene 1C by oxidation at the 1,2-bond (2C), respectively, have been observed to undergo a further dioxygenase-catalyzed asymmetric cis-dihydroxylation at a second bay or pseudo-bay region bond to yield the corresponding bis-cis-dihydrodiols (cis-tetraols) 4A and 4C, the first members of a new class of microbial metabolites in the polycyclic arene series. The enantiopurities and absolute configurations of the new mono-cis-dihydrodiols 2B, 2C, and 3B were determined by H-1 NMR analyses of the corresponding (R)- and (S)-2-(1-methoxyethyl)benzeneboronate (MPBA) ester derivatives. The structure and absolute configurations of the bis-cis-dihydrodiols 4A and 4C were unambiguously determined by spectral analyses, stereochemical correlations, and, for the metabolite 4C, X-ray crystallographic analysis of the bis-acetonide derivative 7C. These results illustrate the marked preference of biphenyl dioxygenase for the cis-di- and tetra-hydroxylations of polycyclic arenes, at the more hindered bay or pseudo-bay regions, by exclusive addition from the same (si:si) face, to yield single enantiomers containing two and four chiral centers.
Resumo:
XPS, TPD and HREEL results indicate that molecular pyrrole is a fragile adsorbate on clean Pd{111}. At 200 K and for low coverages, the molecule remains intact and adopts an almost flat-lying geometry. With increasing coverage, pyrrole molecules tilt away from the surface and undergo N-H bond cleavage to form strongly tilted pyrrolyl (C4H4N) species. In addition, a weakly bound, strongly tilted form of molecular pyrrole is observed at coverages approaching saturation. Heating pyrrole monolayers results in desorption of similar to 15% of the overlayer as molecular pyrrole and N-a+ C4H4Na recombination with formation of hat-lying pyrrole molecules. This strongly bound species undergoes decomposition to adsorbed CN, CHx and H, leading ultimately to desorption of HCN and H-2. The implications of these results for the production of pyrrole by a heterogeneously catalysed route are discussed.
Resumo:
XPS, HREELS, ARUPS and Delta phi data show that furan chemisorbs non-dissociatively on Pd{111} at 175 K, the molecular plane being significantly tilted with respect to the surface normal. Bonding involves both the oxygen lone pair and significant a interaction with the substrate. The degree of decomposition that accompanies molecular desorption is a strong function of coverage: similar to 40% of the adsorbate desorbs molecularly from the saturated monolayer. Decomposition occurs via decarbonylation to yield COa and H-a followed by desorption rate limited loss of H-2 and CO. It seems probable that an adsorbed C3H3 species formed during this process undergoes subsequent stepwise dehydrogenation ultimately yielding H-2 and C-a.
Resumo:
Continuous wave rf plasma polymerization of 2-iodothiophene has been studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), and Fourier transform infrared spectroscopy (FTIR). The variation in plasma polymer stoichiometry and the extent of monomer fragmentation are found to be critically dependent upon the electrical discharge power.
Resumo:
Enantioenriched and enantiopure thiosulfinates were obtained by asymmetric sulfoxidation of cyclic 1,2-disulfides, using chemical and enzymatic (peroxidase, monooxygenase, dioxygenase) oxidation methods and chiral stationary phase HPLC resolution of racemic thiosulfinates. Enantiomeric excess values, absolute configurations and configurational stabilities of chiral thiosulfinates were determined. Methyl phenyl sulfoxide, benzo[c]thiophene cis-4,5-dihydrodiol and 1,3-dihydrobenzo[c]thiophene derivatives were among unexpected types of metabolites isolated, when acyclic and cyclic 1,2-disulfide were used as substrates for Pseudomonas putida strains. Possible biosynthetic pathways are presented for the production of metabolites from 1,4-dihydrobenzo-2,3-dithiane, including a novel cis-dihydrodiol metabolite that was also derived from benzo[c]thiophene and 1,3-dihydrobenzo[c]thiophene.
Resumo:
A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular.