53 resultados para thickness of thin film
Resumo:
Silver thin films were modified using a novel plasma modification process for the development of thin-film silver-silver chloride reference electrodes. The surface, physical, and electrochemical properties of these electrodes were investigated by atomic force microscopy, thickness and resistivity measurement techniques, as well as impedance spectroscopy and potentiometry. After plasma treatment, thin-film growth was observed and the electrodes, in general, exhibited low interface impedance and a roughened surface. Evidence of a complex surface reorganization was found. Correlating plasma conditions with film properties suggested that increasing pressure and exposure duration increased species availability, therefore governing the reaction rates, while input power appeared to influence the type of surface chemical reactions. Results also indicated that Ar/Cl-2 mixtures should be employed rather than pure chlorine plasmas. (C) 2002 The Electrochemical Society.
Resumo:
The use of two gold compounds incorporated into thin plastic films as luminescence quenching oxygen sensors is described. The films are sensitive both to gaseous oxygen and to oxygen dissolved in nonaqueous media such as ethanol. The luminescence quenching of these sensors by oxygen obeys the Stern-Volmer equation and Stern-Volmer constants of 5.35 x 10(-3) and 0.9 x 10(-3) Torr(-1) are found, respectively, for the two dyes in a polystyrene polymer matrix. The sensitivity of the films is strongly influenced by the nature of the polymer matrix, and greatest sensitivity was found in systems based an the polymers polystyrene or cellulose acetate butyrate. Sensitivity was not found to be temperature dependent though raising the temperature hom 15 to 50 degrees C did result in a slight decrease in emission intensity and a hypsochromic shift in the emission wavelength. The rate of response and recovery of the sensors can be increased either by decreasing film thickness or by increasing the operating temperature. The operational and storage stability of these films is generally good though exposure to light should be avoided as one of the dyes tends to undergo photobleaching probably due to a photoinduced ligand substitution reaction.
Resumo:
An attempt has been made to unequivocally identify the influence that inhomogeneous strain fields, surrounding point defects, have on the functional properties of thin film ferroelectrics. Single crystal thin film lamellae of BaTiO3 have been integrated into capacitor structures, and the functional differences between those annealed in oxygen and those annealed in nitrogen have been mapped. Key features, such as the change in the paraelectric-ferroelectric phase transition from first to second order were noted and found to be consistent with mean field modeling predictions for the effects of inhomogeneous strain. Switching characteristics appeared to be unaffected, suggesting that point defects have a low efficacy in domain wall pinning.
Resumo:
In this paper we study the well-posedness for a fourth-order parabolic equation modeling epitaxial thin film growth. Using Kato's Method [1], [2] and [3] we establish existence, uniqueness and regularity of the solution to the model, in suitable spaces, namelyC0([0,T];Lp(Ω)) where with 1<α<2, n∈N and n≥2. We also show the global existence solution to the nonlinear parabolic equations for small initial data. Our main tools are Lp–Lq-estimates, regularization property of the linear part of e−tΔ2 and successive approximations. Furthermore, we illustrate the qualitative behavior of the approximate solution through some numerical simulations. The approximate solutions exhibit some favorable absorption properties of the model, which highlight the stabilizing effect of our specific formulation of the source term associated with the upward hopping of atoms. Consequently, the solutions describe well some experimentally observed phenomena, which characterize the growth of thin film such as grain coarsening, island formation and thickness growth.
Resumo:
We review the design and fabrication of thin-film composite optical waveguides (OWG) with high refractive index for sensor applications. A highly sensitive optical sensor device has been developed on the basis of thin-film, composite OWG. The thin-film OWG was deposited onto the surface of a potassium-ion-exchanged (K+) glass OWG by sputtering or spin coating (5-9 mm wide, and with tapers at both ends). By allowing an adiabatic transition of the guided light from the secondary OWG to the thin-film OWG, the electric field of the evanescent wave at the thin film was enhanced. The attenuation of the guided light in the thin film layer was small, and the guided light intensity changed sensitively with the refractive index of the cladding layer. Our experimental results demonstrate that thin-film, composite OWG gas sensors or immunosensors are much more sensitive than sensors based on other technologies. (c) 2004 Elsevier B.V. All rights reserved.
Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors
Resumo:
Pulsed-laser deposition has been used to fabricate Au/Ba0.5Sr0.5TiO3/SrRuO3/MgO thin film capacitor structures. Crystallographic and microstructural investigations indicated that the Ba0.5Sr0.5TiO3 (BST) had grown epitaxially onto the SrRuO3 lower electrode, inducing in-plane compressive and out- of-plane tensile strain in the BST. The magnitude of strain developed increased systematically as film thickness decreased. At room temperature this composition of BST is paraelectric in bulk. However, polarization measurements suggested that strain had stabilized the ferroelectric state, and that the decrease in film thickness caused an increase in remanent polarization. An increase in the paraelectric-ferroelectric transition temperature upon a decrease in thickness was confirmed by dielectric measurements. Polarization loops were fitted to Landau-Ginzburg-Devonshire (LGD) polynomial expansion, from which a second order paraelectric-ferroelectric transition in the films was suggested at a thickness of similar to500 nm. Further, the LGD analysis showed that the observed changes in room temperature polarization were entirely consistent with strain coupling in the system. (C) 2002 American Institute of Physics.
Resumo:
Thin-film capacitors, with barium strontium titanate (BST) dielectric layers between 7.5 and 950 nm in thickness, were fabricated by pulsed-laser deposition. Both crystallography and cation chemistry were consistent with successful growth of the BST perovskite. At room temperature, all capacitors displayed frequency dispersion such that epsilon (100 kHz)/epsilon (100 Hz) was greater than 0.75. The dielectric constant as a function of thickness was fitted, using the series capacitor model, for BST thicknesses greater than 70 nm. This yielded a large interfacial d(i)/epsilon (i) ratio of 0.40 +/-0.05 nm, implying a highly visible parasitic dead layer within the capacitor structure. Modeled consideration of the dielectric behavior for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/epsilon against d at the dead-layer thickness. In the capacitors studied here, no anomaly was observed. Hence, either (i) 7.5 nm is an upper limit for the total dead-layer thickness in the SRO/BST/Au system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect. (C) 2001 American Institute of Physics.
Resumo:
Arrays of nickel and gold nanorods have been grown on glass and silicon substrates using porous alumina templates of less than 500 nm thickness. A method is demonstrated for varying the diameter of the nanorods whilst keeping the spacing constant. Optical extinction spectra for the gold nanorods show two distinct maxima associated with the transverse and longitudinal axes of the rods. Adding small quantities of oxygen to the aluminium before anodization is found to improve the sharpness of the extinction peaks. The spectral position of the longitudinal peak is shown to be sensitive to the nanorod diameter for constant length and spacing. For the nickel nanorods it is shown that the magnetic properties are governed by both interactions between the wires and shape anisotropy.
Resumo:
Thin film Ba0.5Sr0.5TiO3 (BST) capacitors of thickness similar to75 nm to similar to1200 nm, with Au top electrodes and SrRuO 3 (SRO) or (La, Sr)CoO3 (LSCO) bottom electrodes were fabricated using Pulsed Laser Deposition. Implementing the "series capacitor model," bulk and interfacial capacitance properties were extracted as a function of temperature and frequency. 'Bulk' properties demonstrated typical ceramic behaviour, displaying little frequency dependence and a permittivity and loss peak at 250 K and 150 K respectively. The interfacial component was found to be relatively temperature and frequency independent for the LSCO/BST capacitors, but for the SRO/BST configuration the interfacial capacitance demonstrated moderate frequency and little temperature dependence below T similar to 300 K but a relatively strong frequency and temperature dependence above T similar to3 00 K. This was attributed to the thermal activation of a space charge component combined with a thermally independent background. The activation energy for the space charge was found to be E-A similar to 0.6 eV suggesting de-trapping of electrons from shallow level traps associated with a thin interfacial layer of oxygen vacancies, parallel to the electrodes.
Resumo:
Pulsed Laser Deposition (PLD) was used to make Au/(Ba0.5Sr0.5)TiO3/(La0.5Sr0.5) CoO3/MgO thin film capacitor structures. Functional properties were studied with changing BST thickness from similar to1265 nm to similar to63 nm. The dielectric constant was found to decrease, and migration of T-m (the temperature at which the dielectric constant is maximum) to lower temperatures occurred as thickness was reduced. Curie-Weiss plots of the as-obtained dielectric data, indicated that the Curie temperature was also systemmatically progressively depressed. Further, fitting to expressions previously used to describe diffuse phase transitions suggested increased diffuseness in transformation behaviour as film thickness decreased. This paper discusses the care needed in interpreting the observations given above. We make particular distinction between the apparent Curie-temperature derived from Curie-Weiss plots of as-measured data, and the inherent Curie temperature determined after correction for the interfacial capacitance. We demonstrate that while the apparent Curie temperature decreases as thickness decreases, the inherent Curie temperature is thickness independent. Thickness-invariant phase transition behaviour is confirmed from analysis of polarisation loops, and from examination of the temperature dependence of the loss-tangent. We particularly note that correction of data for interfacial capacitance does not alter the position of T-m. We must therefore conclude that the position of T-m is not related simply to phase transformation behaviour in BST thin films.
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.
Resumo:
The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.