10 resultados para stars: emission line, Be


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: The stellar population of the 30 Doradus star-forming region in the Large Magellanic Cloud contains a subset of apparently single, rapidly rotating O-type stars. The physical processes leading to the formation of this cohort are currently uncertain. 

Aims: One member of this group, the late O-type star VFTS 399, is found to be unexpectedly X-ray bright for its bolometric luminosity-in this study we aim to determine its physical nature and the cause of this behaviour. 

Methods: To accomplish this we performed a time-resolved analysis of optical, infrared and X-ray observations. 

Results: We found VFTS 399 to be an aperiodic photometric variable with an apparent near-IR excess. Its optical spectrum demonstrates complex emission profiles in the lower Balmer series and select He i lines-taken together these suggest an OeBe classification. The highly variable X-ray luminosity is too great to be produced by a single star, while the hard, non-thermal nature suggests the presence of an accreting relativistic companion. Finally, the detection of periodic modulation of the X-ray lightcurve is most naturally explained under the assumption that the accretor is a neutron star. 

Conclusions: VFTS 399 appears to be the first high-mass X-ray binary identified within 30 Dor, sharing many observational characteristics with classical Be X-ray binaries. Comparison of the current properties of VFTS 399 to binary-evolution models suggests a progenitor mass 25 M for the putative neutron star, which may host a magnetic field comparable in strength to those of magnetars. VFTS 399 is now the second member of the cohort of rapidly rotating "single" O-type stars in 30 Dor to show evidence of binary interaction resulting in spin-up, suggesting that this may be a viable evolutionary pathway for the formation of a subset of this stellar population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the discovery of the B[e] star VFTS 822 in the 30 Doradus star-forming region of the Large Magellanic Cloud, classified by optical spectroscopy from the VLT-FLAMES Tarantula Survey and complementary infrared photometry. VFTS 822 is a relatively low-luminosity (log L = 4.04 ± 0.25 L·) B8[e] star. In this Letter, we evaluate the evolutionary status of VFTS 822 and discuss its candidacy as a Herbig B[e] star. If the object is indeed in the pre-main sequence phase, it would present an exciting opportunity to spectroscopically measure mass accretion rates at low metallicity, to probe the effect of metallicity on accretion rates. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We present an analysis of a peculiar supergiant B-type star (VFTS698/Melnick 2/Parker 1797) in the 30 Doradus region of the Large Magellanic Cloud which exhibits characteristics similar to the broad class of B[e] stars. Methods. We analyse optical spectra from the VLT-FLAMES survey, together with archival optical and infrared photometry and X-ray imaging to characterise the system. Results. We find radial velocity variations of around 400 km s -1 in the high excitation Si iv, N iii and He ii spectra, and photometric variability of ∼0.6 mag with a period of 12.7 d. In addition, we detect long-term photometric variations of ∼0.25 mag, which may be due to a longer-term variability with a period of ∼400 d. Conclusions. We conclude that VFTS698 is likely an interacting binary comprising an early B-type star secondary orbiting a veiled, more massive companion. Spectral evidence suggests a mid-to-late B-type primary, but this may originate from an optically-thick accretion disc directly surrounding the primary. © 2012 ESO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to 1043 erg s-1. Here, we introduce a simple treatment of clumping, and find that a filling factor of ˜0.01 moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Lyα and C IV 1550 Å at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the design, construction and commissioning of LOTUS; a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5x95 arcsec) and wide (5x25 arcsec) options that are optimized for spectral resolution and flux calibration respectively. On sky testing shows a wavelength range of 3200-6300 Angstroms with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependant spectral resolution of R=225-430. By repeated observations of the symbiotic emission line star AG Peg we demonstrate the wavelength stability of the system is less than 2 Angstroms rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The direct detection of a stellar system that explodes as a Type Ia supernova (SN Ia) has not yet been successful. Various indirect methods have been used to investigate SN Ia progenitor systems but none have produced conclusive results. A prediction of single-degenerate models is that H- (or He-) rich material from the envelope of the companion star should be swept up by the SN ejecta in the explosion. Seven SNe Ia have been analysed to date looking for signs of H-rich material in their late-time spectra and none were detected. We present results from new late-time spectra of 11 SNe Ia obtained at the Very Large Telescope using XShooter and FORS2. We present the tentative detection of Hα emission for SN 2013ct, corresponding to ∼0.007 M of stripped/ablated companion star material (under the assumptions of the spectral modelling). This mass is significantly lower than expected for single-degenerate scenarios, suggesting that >0.1 M of H-rich is present but not observed. We do not detect Hα emission in the other 10 SNe Ia. This brings the total sample of normal SNe Ia with non-detections (<0.001–0.058 M) of H-rich material to 17 events. The simplest explanation for these non-detections is that these objects did not result from the explosion of a CO white dwarf accreting matter from a H-rich companion star via Roche lobe overflow or symbiotic channels. However, further spectral modelling is needed to confirm this. We also find no evidence of He-emission features, but models with He-rich companion stars are not available to place mass limits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The observed line intensity ratios of the Si ii λ1263 and λ1307 multiplets to that of Si ii λ1814 in the broad-line region (BLR) of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al., who termed it the "Si ii disaster," and it has remained unresolved. We investigate the problem in the light of newly published atomic data for Si ii. Specifically, we perform BLR calculations using several different atomic data sets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and we also consider blending with other species. However, we find that none of the options investigated resolve the Si ii disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity () may solve the Si ii disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si ii λ1307 multiplet with emission lines of O i, although the predicted degree of blending is incompatible with the observed λ1263/λ1307 intensity ratios. Clearly, more work is required on the quasar modeling of not just the Si ii lines but also nearby transitions (in particular those of O i) to fully investigate whether blending may be responsible for the Si ii disaster.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Emission and absorption line observations of molecules in late-type stars are a vital component in our understanding of stellar evolution, dust formation and mass loss in these objects. The molecular composition of the gas in the circumstellar envelopes of AGB stars reflects chemical processes in gas whose properties are strong functions of radius with density and temperature varying by more than ten and two orders of magnitude, respectively. In addition, the interstellar UV field plays a critical role in determining not only molecular abundances but also their radial distributions. In this article, I shall briefly review some recent successful approaches to describing chemistry in both the inner and outer envelopes and outline areas of challenge for the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound–bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.