29 resultados para refined multiscale entropy
Resumo:
A time-domain formulation of a lumped model ap-
proximation of a clarinet reed excitation mechanism is presented.
The lumped model is based on an analytical representation of
the ow within the reed channel, incorporating a contraction
coefcient (vena contracta factor) that is dened as the ratio of
the effective ow over the Bernoulli ow. This coefcient has
been considered to be constant in previous studies focusing on
sound synthesis. In this paper it will be treated as a function
of the reed opening, varying between 0 and 1 as predicted by
boundary layer ow theory. Focussing on a specic mouthpiece
geometry, the effect of modelling a variable air jet height on the
synthesised sound is analysed.
Resumo:
Nano- and meso-scale simulation of chemical ordering kinetics in nano-layered L1(0)-AB binary intermetallics was performed. In the nano- (atomistic) scale Monte Carlo (MC) technique with vacancy mechanism of atomic migration implemented with diverse models for the system energetics was used. The meso-scale microstructure evolution was, in turn, simulated by means of a MC procedure applied to a system built of meso-scale voxels ordered in particular L1(0) variants. The voxels were free to change the L1(0) variant and interacted with antiphase-boundary energies evaluated within the nano-scale simulations. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L1(0) c-variant superstructure with monoatomic planes parallel to the (001)-oriented layer surface and off-plane easy magnetization. The layers, originally perfectly ordered in the c-variant, showed discontinuous precipitation of a- and b-L1(0)-variant domains running in parallel with homogeneous disordering (i.e. generation of antisite defects). The domains nucleated heterogeneously on the free monoatomic Fe surface of the layer, grew inwards its volume and relaxed towards an equilibrium microstructure of the system. Two
Resumo:
This paper presents an analysis of entropy-based molecular descriptors. Specifically, we use real chemical structures, as well as synthetic isomeric structures, and investigate properties of and among descriptors with respect to the used data set by a statistical analysis. Our numerical results provide evidence that synthetic chemical structures are notably different to real chemical structures and, hence, should not be used to investigate molecular descriptors. Instead, an analysis based on real chemical structures is favorable. Further, we find strong hints that molecular descriptors can be partitioned into distinct classes capturing complementary information.
Resumo:
In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
By means of the time dependent density matrix renormalization group algorithm we study the zero-temperature dynamics of the Von Neumann entropy of a block of spins in a Heisenberg chain after a sudden quench in the anisotropy parameter. In the absence of any disorder the block entropy increases linearly with time and then saturates. We analyse the velocity of propagation of the entanglement as a function of the initial and final anisotropies and compare our results, wherever possible, with those obtained by means of conformal field theory. In the disordered case we find a slower ( logarithmic) evolution which may signal the onset of entanglement localization.
Resumo:
This paper provides an overview of research on modelling of the structure–property interactions of polymer nanocomposites in manufacturing processes (stretch blow moulding and thermoforming) involving large-strain biaxial stretching of relatively thin sheets, aimed at developing computer modelling tools to help producers of materials, product designers and manufacturers exploit these materials to the full, much more quickly than could be done by experimental methods alone. The exemplar systems studied are polypropylene and polyester terephalate, with nanoclays. These were compounded and extruded into 2mm thick sheet which was then biaxially stretched at 155°C for the PP and 90 to 100°C for the PET. Mechanical properties were determined for the unstretched and stretched materials, together with TEM and XRD studies of structure. Multi-scale modelling, using representative volume elements is used to model the properties of these products.
Resumo:
We present a step-by-step guide of a refined magnetoseismological technique for plasma diagnostics in the Sun’s corona. Recently developed MHD wave theory which models a coronal loop as an expanding magnetic flux tube with an arbitrary longitudinal plasma density profile is applied to TRACE observations of fast kink
oscillations. The theory predicts that using the observed ratio of the first overtone and fundamental mode to predict the plasma density scale height and not taking account of loop expansion will lead to an overestimation of scale height. For the first time, the size of this correction is quantified directly from observation and for the particular case study presented here, it is found that the overestimation is approximately by a factor of 2.