31 resultados para ontology alignment
Resumo:
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93-m telescope at Haute-Provence Observatory. The shape of the effect shows that the sky-projected angle between the stellar rotation axis and planetary orbital axis (?) is small and consistent with zero within . WASP-3b joins the ~two-thirds of planets with measured spin-orbit angles that are well aligned and are thought to have undergone a dynamically gentle migration process such as planet-disc interactions. We find a systematic effect which leads to an anomalously high determination of the projected stellar rotational velocity (vsini = 19.6+2.2-2.1kms-1) compared to the value found from spectroscopic line broadening (vsini = 13.4 +/- 1.5kms-1). This is thought to be caused by a discrepancy in the assumptions made in the extraction and modelling of the data. Using a model developed by Hirano et al. designed to address this issue, we find vsini to be consistent with the value obtained from spectroscopic broadening measurements (vsini = 15.7+1.4-1.3kms-1).
Resumo:
This paper attempts to advance the thinking in Stetsenko’s paper by situating the concepts of relational ontology and transformative activist stance in the context of coteaching and cogenerative dialogue. In so doing, we hope to make Stetsenko’s ideas more operational in terms of access and application by researchers, teachers, policy makers and other stakeholders in education. Stetsenko argues that moving from relational ontology to a transformative activist stance can be considered as moving from participation to contribution. When this model was applied to coteaching and cogenerative dialogue, it was apparent that the coteaching and cogenerative dialogue moved further, from contribution to shared contribution, adding even greater potential for transformation. The paper also discusses the use of cultural historical activity theory in articulating the relationships, dynamics and interpretations of coteaching and cogenerative dialogue in relation to the wider context of their application.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.
Resumo:
In responding to the demand for change and improvement, local government has applied a plethora of operations management-based methods, tools and techniques. This article explores how these methods, specifically in the form of performance management models, are used to improve alignment between central government policy and local government practice, an area which has thus far been neglected in the literature. Using multiple case studies from Environmental Waste Management Services, this research reports that models derived in the private sector are often directly ‘implanted’ into the public sector. This has challenged the efficacy of all performance management models. However, those organisations which used models most effectively did so by embedding (contextualisation) and extending (reconceptualisation) them beyond their original scope. Moreover, success with these models created a cumulative effect whereby other operations management approaches were probed, adapted and used.
Resumo:
The Cell Broadband Engine (BE) Architecture is a new heterogeneous multi-core architecture targeted at compute-intensive workloads. The architecture of the Cell BE has several features that are unique in high-performance general-purpose processors, most notably the extensive support for vectorization, scratch pad memories and explicit programming of direct memory accesses (DMAs) and mailbox communication. While these features strongly increase programming complexity, it is generally claimed that significant speedups can be obtained by using Cell BE processors. This paper presents our experiences with using the Cell BE architecture to accelerate Clustal W, a bio-informatics program for multiple sequence alignment. We report on how we apply the unique features of the Cell BE to Clustal W and how important each is in obtaining high performance. By making extensive use of vectorization and by parallelizing the application across all cores, we demonstrate a speedup of 24.4 times when using 16 synergistic processor units on a QS21 Cell Blade compared to single-thread execution on the power processing unit. As the Cell BE exploits a large number of slim cores, our highly optimized implementation is just 3.8 times faster than a 3-thread version running on an Intel Core2 Duo, as the latter processor exploits a small number of fat cores.