50 resultados para mean field independent component analysis
Resumo:
In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.
Resumo:
In this paper, we consider the problem of tracking similar objects. We show how a mean field approach can be used to deal with interacting targets and we compare it with Markov Chain Monte Carlo (MCMC). Two mean field implementations are presented. The first one is more general and uses particle filtering. We discuss some simplifications of the base algorithm that reduce the computation time. The second one is based on suitable Gaussian approximations of probability densities that lead to a set of self-consistent equations for the means and covariances. These equations give the Kalman solution if there is no interaction. Experiments have been performed on two kinds of sequences. The first kind is composed of a single long sequence of twenty roaming ants and was previously analysed using MCMC. In this case, our mean field algorithms obtain substantially better results. The second kind corresponds to selected sequences of a football match in which the interaction avoids tracker coalescence in situations where independent trackers fail.
Resumo:
We address the problem of non-linearity in 2D Shape modelling of a particular articulated object: the human body. This issue is partially resolved by applying a different Point Distribution Model (PDM) depending on the viewpoint. The remaining non-linearity is solved by using Gaussian Mixture Models (GMM). A dynamic-based clustering is proposed and carried out in the Pose Eigenspace. A fundamental question when clustering is to determine the optimal number of clusters. From our point of view, the main aspect to be evaluated is the mean gaussianity. This partitioning is then used to fit a GMM to each one of the view-based PDM, derived from a database of Silhouettes and Skeletons. Dynamic correspondences are then obtained between gaussian models of the 4 mixtures. Finally, we compare this approach with other two methods we previously developed to cope with non-linearity: Nearest Neighbor (NN) Classifier and Independent Component Analysis (ICA).
Resumo:
Biosignal measurement and processing is increasingly being deployed in ambulatory situations particularly in connected health applications. Such an environment dramatically increases the likelihood of artifacts which can occlude features of interest and reduce the quality of information available in the signal. If multichannel recordings are available for a given signal source, then there are currently a considerable range of methods which can suppress or in some cases remove the distorting effect of such artifacts. There are, however, considerably fewer techniques available if only a single-channel measurement is available and yet single-channel measurements are important where minimal instrumentation complexity is required. This paper describes a novel artifact removal technique for use in such a context. The technique known as ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA) is capable of operating on single-channel measurements. The EEMD technique is first used to decompose the single-channel signal into a multidimensional signal. The CCA technique is then employed to isolate the artifact components from the underlying signal using second-order statistics. The new technique is tested against the currently available wavelet denoising and EEMD-ICA techniques using both electroencephalography and functional near-infrared spectroscopy data and is shown to produce significantly improved results. © 1964-2012 IEEE.
Resumo:
This paper emerged from work supported by EPSRC grant GR/S84354/01 and proposes a method of determining principal curves, using spline functions, in principal component analysis (PCA) for the representation of non-linear behaviour in process monitoring. Although principal curves are well established, they are difficult to implement in practice if a large number of variables are analysed. The significant contribution of this paper is that the proposed method has minimal complexity, assuming simple spline geometry, thus enabling efficient computation. The paper provides a foundation for further work where multiple curves may be required to represent underlying non-linear information in complex data.
Resumo:
This paper presents a new technique for the detectionof islanding conditions in electrical power systems. This problem isespecially prevalent in systems with significant penetrations of distributedrenewable generation. The proposed technique is based onthe application of principal component analysis (PCA) to data setsof wide-area frequency measurements, recorded by phasor measurementunits. The PCA approach was able to detect islandingaccurately and quickly when compared with conventional RoCoFtechniques, as well as with the frequency difference and change-ofangledifference methods recently proposed in the literature. Thereliability and accuracy of the proposed PCA approach is demonstratedby using a number of test cases, which consider islandingand nonislanding events. The test cases are based on real data,recorded from several phasor measurement units located in theU.K. power system.
Resumo:
Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.
Automatic Detection of Process Instabilities in Wastewater Treatment by Principal Component Analysis