8 resultados para matrix reduction, nonsymmetric tridiagonalization, QR
Resumo:
Real-time matrix inversion is a key enabling technology in multiple-input multiple-output (MIMO) communications systems, such as 802.11n. To date, however, no matrix inversion implementation has been devised which supports real-time operation for these standards. In this paper, we overcome this barrier by presenting a novel matrix inversion algorithm which is ideally suited to high performance floating-point implementation. We show how the resulting architecture offers fundamentally higher performance than currently published matrix inversion approaches and we use it to create the first reported architecture capable of supporting real-time 802.11n operation. Specifically, we present a matrix inversion approach based on modified squared Givens rotations (MSGR). This is a new QR decomposition algorithm which overcomes critical limitations in other QR algorithms that prohibits their application to MIMO systems. In addition, we present a novel modification that further reduces the complexity of MSGR by almost 20%. This enables real-time implementation with negligible reduction in the accuracy of the inversion operation, or the BER of a MIMO receiver based on this.
Resumo:
Surface plasmon resonance (SPR) based biosensor technology has been widely used in life science research for many applications. While the advantages of speed, ruggedness, versatility, sensitivity and reproducibility are often quoted, many researchers have experienced severe problem of non-specific binding (NSB) to chip surfaces when performing analysis of biological samples Such as bovine serum. Using the direct measurement of the bovine protein leptin, present in bovine serum samples as a model, a unique buffering system has been developed and optimised which was able to significantly reduce the non-specific interactions of bovine serum components with the carboxymethyl dextran chip (CM5) surface on a Biacore SPR The developed NSB buffering system comprised of HBS-EP buffer, containing 0.5 M NaCl, 0.005% CM-dextran pH 9.0. An average NSB reduction (n = 20) of 85.9% and 87.3% was found on an unmodified CM5 surface and a CM5 with bovine leptin immobilised on the chip surface, respectively. A reduction in NSB of up to 94% was observed on both surfaces. The concentration of the constitutive components and pH of the buffer were crucial in achieving this outcome. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Regulatory authorities, the food industry and the consumer demand reliable determination of chemical contaminants present in foods. A relatively new analytical technique that addresses this need is an immunobiosensor based on surface plasmon resonance (SPR) measurements. Although a range of tests have been developed to measure residues in milk, meat, animal bile and honey, a considerable problem has been encountered with both serum and plasma samples. The high degree of non-specific binding of some sample components can lead to loss of assay robustness, increased rates of false positives and general loss of assay sensitivity. In this paper we describe a straightforward precipitation technique to remove interfering substances from serum samples to be analysed for veterinary anthelmintics by SPR. This technique enabled development of an assay to detect a wide range of benzimidazole residues in serum samples by immunobiosensor. The limit of quantification was below 5 ng/ml and coefficients of variation were about 2%.
Resumo:
Background Childhood asthma is characterized by inflammation of the airways. Structural changes of the airway wall may also be seen in some children early in the course of the disease. Matrix metalloproteinases (MMPs) are key mediators in the metabolism of the extracellular matrix (ECM). Objective To investigate the balance of MMP-8, MMP-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in the airways of children with asthma. Methods One hundred and twenty-four children undergoing elective surgical procedures also underwent non-bronchoscopic bronchoalveolar lavage (BAL). MMP-8, MMP-9 and TIMP-1 were measured by ELISA. Results There was a significant reduction in MMP-9 in atopic asthmatic children (n=31) compared with normal children (n=30) [median difference: 0.57 ng/mL (95% confidence interval: 0.18–1.1 ng/mL)]. The ratio of MMP-9 to TIMP-1 was also reduced in asthmatic children. Levels of all three proteins were significantly correlated to each other and to the relative proportions of particular inflammatory cells in BAL fluid (BALF). Both MMP-8 and MMP-9 were moderately strongly correlated to the percentage neutrophil count (r=0.40 and 0.47, respectively, P
Resumo:
Objectives: Acute respiratory distress syndrome (ARDS) is characterized by alveolar-capillary barrier damage. Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of ARDS. In the Beta Agonists in Acute Lung Injury Trial, intravenous salbutamol reduced extravascular lung water (EVLW) in patients with ARDS at day 4 but not inflammatory cytokines or neutrophil recruitment. We hypothesized that salbutamol reduces MMP activity in ARDS.
Methods: MMP-1/-2/-3/-7/-8/-9/-12/-13 was measured in supernatants of distal lung epithelial cells, type II alveolar cells, and bronchoalveolar lavage (BAL) fluid from patients in the Beta Agonists in Acute Lung Injury study by multiplex bead array and tissue inhibitors of metalloproteinases (TIMPs)-1/-2 by enzyme-linked immunosorbent assay. MMP-9 protein and activity levels were further measured by gelatin zymography and fluorokine assay.
Measurements and Main Results: BAL fluid MMP-1/-2/-3 declined by day 4, whereas total MMP-9 tended to increase. Unexpectedly, salbutamol augmented MMP-9 activity. Salbutamol induced 33.7- and 13.2-fold upregulation in total and lipocalin-associated MMP-9, respectively at day 4, compared with 2.0- and 1.3-fold increase in the placebo group, p < 0.03. Salbutamol did not affect BAL fluid TIMP-1/-2. Net active MMP-9 was higher in the salbutamol group (4222 pg/mL, interquartile range: 513-7551) at day 4 compared with placebo (151 pg/mL, 124-2108), p = 0.012. Subjects with an increase in BAL fluid MMP-9 during the 4-day period had lower EVLW measurements than those in whom MMP-9 fell (10 vs. 17 mL/kg, p = 0.004): change in lung water correlated inversely with change in MMP-9, r = -.54, p = 0.0296. Salbutamol up-regulated MMP-9 and down-regulated TIMP-1/-2 secretion in vitro by distal lung epithelial cells. Inhibition of MMP-9 activity in cultures of type II alveolar epithelial cells reduced wound healing.
Conclusions: Salbutamol specifically up-regulates MMP-9 in vitro and in vivo in patients with ARDS. Up-regulated MMP-9 is associated with a reduction in EVLW. MMP-9 activity is required for alveolar epithelial wound healing in vitro. Data suggest MMP-9 may have a previously unrecognized beneficial role in reducing pulmonary edema in ARDS by improving alveolar epithelial healing.
Resumo:
Modern Multiple-Input Multiple-Output (MIMO) communication systems place huge demands on embedded processing resources in terms of throughput, latency and resource utilization. State-of-the-art MIMO detector algorithms, such as Fixed-Complexity Sphere Decoding (FSD), rely on efficient channel preprocessing involving numerous calculations of the pseudo-inverse of the channel matrix by QR Decomposition (QRD) and ordering. These highly complicated operations can quickly become the critical prerequisite for real-time MIMO detection, exaggerated as the number of antennas in a MIMO detector increases. This paper describes a sorted QR decomposition (SQRD) algorithm extended for FSD, which significantly reduces the complexity and latency
of this preprocessing step and increases the throughput of MIMO detection. It merges the calculations of the QRD and ordering operations to avoid multiple iterations of QRD. Specifically, it shows that SQRD reduces the computational complexity by over 60-70% when compared to conventional
MIMO preprocessing algorithms. In 4x4 to 7x7 MIMO cases, the approach suffers merely 0.16-0.2 dB reduction in Bit Error Rate (BER) performance.
Resumo:
Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.
Resumo:
This paper proposes a fast moving window algorithm for QR and Cholesky decompositions by simultaneously applying data updating and downdating. The developed procedure is based on inner products and entails a similar downdating to that of the Chambers’ approach. For adding and deleting one row of data from the original matrix, a detailed analysis shows that the proposed algorithm outperforms existing ones in terms or computational efficiency, if the number of columns exceeds 7. For a large number of columns, the proposed algorithm is numerically superior compared to the traditional sequential technique.