17 resultados para matrix reduction, nonsymmetric tridiagonalization, QR

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study Galois representations corresponding to abelian varieties with certain reduction conditions. We show that these conditions force the image of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) holds. We also prove that the set of abelian varieties satisfying these conditions is dense in a corresponding moduli space.

The main results of the thesis are the following two theorems.

Theorem A: Let A be an absolutely simple abelian variety, End° (A) = k : imaginary quadratic field, g = dim(A). Assume either dim(A) ≤ 4, or A has bad reduction at some prime ϕ, with the dimension of the toric part of the reduction equal to 2r, and gcd(r,g) = 1, and (r,g) ≠ (15,56) or (m -1, m(m+1)/2). Then MT holds.

Theorem B: Let M be the moduli space of abelian varieties with fixed polarization, level structure and a k-action. It is defined over a number field F. The subset of M(Q) corresponding to absolutely simple abelian varieties with a prescribed stable reduction at a large enough prime ϕ of F is dense in M(C) in the complex topology. In particular, the set of simple abelian varieties having bad reductions with fixed dimension of the toric parts is dense.

Besides this we also established the following results:

(1) MT holds for some other classes of abelian varieties with similar reduction conditions. For example, if A is an abelian variety with End° (A) = Q and the dimension of the toric part of its reduction is prime to dim( A), then MT holds.

(2) MT holds for Ribet-type abelian varieties.

(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds.

(4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 4-folds of type I.

(5) For some abelian varieties either MT or the Hodge conjecture holds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether “quantization commutes with reduction.” Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kähler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kähler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds.

In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kähler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or “admissible”, values of momentum.

We first propose a reduction procedure for the prequantum geometric structures that “covers” symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems.

We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces.

Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees with its usual decomposition by irreducible representations, and so proves that quantization and reduction do indeed commute in this context.

A significant omission from the proof is the construction of an inner product on the space of polarized sections, and a discussion of its behavior under reduction. In the concluding chapter of the thesis, we suggest some ideas for future work in this direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cp*_2Sc-H reacts with H_2 and CO at -78°C to yield Cp*_2ScOCH_3. A stepwise reduction of CO to an alkoxide is observed when CO reacts with Cp*_2ScC_6H_4CH_3-p to give the η^2-acyl Cp*_2Sc(CO)C_6H_4CH_3-p, which then reacts with H_2 to produce Cp*_2ScOCH_2C_6H_4CH_3-p. Cp*_2ScCH_3 and Cp*_2ScH(THF) react with CO to give unchar- uncharacterizable products. Cp*_2ScH and Cp*_2ScCH_3 react with Cp_2MCO (M = Mo, W) to give scandoxycarbenes, Cp_2M=C(CH_3)OScCp*_2, while a wide variety of Cp*_2ScX (X = H, CH_3, N(CH_3)_2, CH_2CH_2C_6H_5) reacts with CpM(CO)_2 (M = Co, Rh) to yield similar carbene complexes. An x-ray crystal structure determination of Cp(CO)Co=C(CH_3)- OScCp*_2 revealed a µ^2: η^1, η^1 carbonyl interaction between the Co-CO and Sc.

CO_2 inserts cleanly into Sc-phenyl bonds at -78°C to produce a carboxylate complex, Cp*_2Sc(O_2C)C_6H_4CH_3-p. The structure of this compound was determined by x-ray crystallographic techniques.

Excess C_2H_2 reacts with Cp*_2ScR (R = H, alkyl, aryl, alkenyl, alkynyl, amide) at temperatures below -78°C to form the alkynyl species Cp*_2Sc-C≡C-H, which then reacts with the remaining acetylene to form polyacetylene. Cp*_2Sc-C≡C-H further reacts to yield Cp*_2sc-C≡C-ScCp*_2. This unusual C_2 bridged dimer was characterized by x-ray crystallography.

Attempts were made to model the C-N bond breaking step of hydrodenitrogenation by synthesizing Cp*_2TaH(η^2-H_2C=N(C_6H_4X)) and studying its rearrangement to Cp*_2Ta(=N(C_6H_4X))(CH_3). The 1,2 addition/elimination reactions of Cp*_2Ta(η^2- H_2C=N(CH_3)H and Cp*_2Ta(=X)H (X=O, S, NH, N(C_6H_5)) were investigated. Cp*_2Ta(=NH)H was found to react with D_2 to give Cp*_2Ta(=ND)H, implying a nonsymmetric amide-dihydride intermediate for the addition/elimination process. Cp*_2Ta(=S)H and H_2O equilibrate with Cp*_2Ta(=O)H and H_2S, which allowed determination of the difference in bond strengths for Ta=O and Ta=S. Ta=O was found to be approximately 41 kcals/mole stronger than Ta=S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.

The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.

Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.

In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous emission into the lasing mode fundamentally limits laser linewidths. Reducing cavity losses provides two benefits to linewidth: (1) fewer excited carriers are needed to reach threshold, resulting in less phase-corrupting spontaneous emission into the laser mode, and (2) more photons are stored in the laser cavity, such that each individual spontaneous emission event disturbs the phase of the field less. Strong optical absorption in III-V materials causes high losses, preventing currently-available semiconductor lasers from achieving ultra-narrow linewidths. This absorption is a natural consequence of the compromise between efficient electrical and efficient optical performance in a semiconductor laser. Some of the III-V layers must be heavily doped in order to funnel excited carriers into the active region, which has the side effect of making the material strongly absorbing.

This thesis presents a new technique, called modal engineering, to remove modal energy from the lossy region and store it in an adjacent low-loss material, thereby reducing overall optical absorption. A quantum mechanical analysis of modal engineering shows that modal gain and spontaneous emission rate into the laser mode are both proportional to the normalized intensity of that mode at the active region. If optical absorption near the active region dominates the total losses of the laser cavity, shifting modal energy from the lossy region to the low-loss region will reduce modal gain, total loss, and the spontaneous emission rate into the mode by the same factor, so that linewidth decreases while the threshold inversion remains constant. The total spontaneous emission rate into all other modes is unchanged.

Modal engineering is demonstrated using the Si/III-V platform, in which light is generated in the III-V material and stored in the low-loss silicon material. The silicon is patterned as a high-Q resonator to minimize all sources of loss. Fabricated lasers employing modal engineering to concentrate light in silicon demonstrate linewidths at least 5 times smaller than lasers without modal engineering at the same pump level above threshold, while maintaining the same thresholds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation will cover several disparate topics, with the overarching theme centering on the investigation of organometallic C-H activation and hydrocarbon transformation and upgrading. Chapters 2 and 3 discuss iridium and rhodium analogues of the Shilov cycle catalyst for methane to methanol oxidation, and Chapter 4 on the recently discovered ROA mechanistic motif in catalysts for various alkane partial oxidation reactions. In addition, Chapter 5 discusses the mechanism of nickel pyridine bisoxazoline Negishi catalysts for asymmetric and stereoconvergent C-C coupling, and the appendices discuss smaller projects on rhodium H/D exchange catalysts and DFT method benchmarking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.

Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prime thrust of this dissertation is to advance the development of fuel cell dioxygen reduction cathodes that employ some variant of multicopper oxidase enzymes as the catalyst. The low earth-abundance of platinum metal and its correspondingly high market cost has prompted a general search amongst chemists and materials scientists for reasonable alternatives to this metal for facilitating catalytic dioxygen reduction chemistry. The multicopper oxidases (MCOs), which constitute a class of enzyme that naturally catalyze the reaction O2 + 4H+ + 4e- → 2H2O, provide a promising set of biochemical contenders for fuel cell cathode catalysts. In MCOs, a substrate reduces a copper atom at the type 1 site, where charge is then transferred to a trinuclear copper cluster consisting of a mononuclear type 2 or “normal copper” site and a binuclear type 3 copper site. Following the reduction of all four copper atoms in the enzyme, dioxygen is then reduced to water in two two-electron steps, upon binding to the trinuclear copper cluster. We identified an MCO, a laccase from the hyperthermophilic bacterium Thermus thermophilus strain HB27, as a promising candidate for cathodic fuel cell catalysis. This protein demonstrates resilience at high temperatures, exhibiting no denaturing transition at temperatures high as 95°C, conditions relevant to typical polymer electrolyte fuel cell operation.

In Chapter I of this thesis, we discuss initial efforts to physically characterize the enzyme when operating as a heterogeneous cathode catalyst. Following this, in Chapter II we then outline the development of a model capable of describing the observed electrochemical behavior of this enzyme when operating on porous carbon electrodes. Developing a rigorous mathematical framework with which to describe this system had the potential to improve our understanding of MCO electrokinetics, while also providing a level of predictive power that might guide any future efforts to fabricate MCO cathodes with optimized electrochemical performance. In Chapter III we detail efforts to reduce electrode overpotentials through site-directed mutagenesis of the inner and outer-sphere ligands of the Cu sites in laccase, using electrochemical methods and electronic spectroscopy to try and understand the resultant behavior of our mutant constructs. Finally, in Chapter IV, we examine future work concerning the fabrication of enhanced MCO cathodes, exploring the possibility of new cathode materials and advanced enzyme deposition techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.

In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.

An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.