19 resultados para mannitol
Resumo:
The subambient behavior of aqueous mannitol solutions is of considerable relevance to the preparation of freeze dried formulations. In this investigation the properties of 3% w/v mannitol solutions were investigated using differential scanning calorimetry (DSC), cold stage microscopy (CSM), and X-ray diffraction (XRD) to identify the thermal transitions and structural transformations undergone by this system. It was found that on cooling from ambient the system formed ice at circa -20°C while a further exotherm was seen at approximately -30°C. Upon reheating an endotherm was seen at circa -30°C followed immediately by an exotherm at circa -25°C. Temperature cycling indicated that the thermal transitions observed upon reheating were not reversible. Modulated temperature DSC (MTDSC) indicated that the transitions observed upon reheating corresponded to a glass transition immediately followed by recrystallization, XRD data showed that recrystallization was into the ß form. Annealing at -35°C for 40 min prior to cooling and reheating resulted in a maximum enthalpy being observed for the reheating exotherm. It is concluded that on cooling 3% w/v aqueous mannitol solutions an amorphous phase is formed that subsequently recrystallises into the ß form. The study has also shown that DSC, CSM, and XRD are useful complementary techniques for the study of frozen systems
Resumo:
Abstract The aim was twofold; to demonstrate the ability of temperature-controlled Raman microscopy (TRM) to locate mannitol within a frozen system and determine its form; to investigate the annealing behavior of mannitol solutions at -30 °C. The different polymorphic forms of anhydrous mannitol as well as the hemihydrate and amorphous form were prepared and characterized using crystal or powder X-ray diffractometry (XRD) as appropriate and Raman microscopy. Mannitol solutions (3% w/v) were cooled before annealing at -30 °C. TRM was used to map the frozen systems during annealing and was able to differentiate between the different forms of mannitol and revealed the location of both ß and d polymorphic forms within the structure of the frozen material for the first time. TRM also confirmed that the crystalline mannitol is preferentially deposited at the edge of the frozen drop, forming a rim that thickens upon annealing. While there is no preference for one form initially, the study has revealed that the mannitol preferentially transforms to the ß form with time. TRM has enabled observation of spatially resolved behavior of mannitol during the annealing process for the first time. The technique has clear potential for studying other crystallization processes, with particular advantage for frozen systems.
Resumo:
Hyperglycemia may contribute directly to pericyte loss and capillary leakage in early diabetic retinopathy. To elucidate relative contributions of glycation, glycoxidation, sugar autoxidation, osmotic stress and metabolic effects in glucose-mediated capillary damage, we tested the effects of D-glucose, L-glucose, mannitol and the potentially protective effects of aminoguanidine on cultured bovine retinal capillary pericytes and endothelial cells. Media (containing 5 mM D-glucose) were supplemented to increase the concentration of each sugar by 5, 10, or 20 mM. Subconfluent pericytes and endothelial cells were exposed to the supplemented media in the presence or absence of aminoguanidine (1 nM-100 µM) for three days. Cell counts, viability and protein were determined. For both cell types, all three sugars produced concentration-dependent decreases in cell counts and protein content (p
Resumo:
Resumo:
AIMS/HYPOTHESIS: To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells. METHODS: Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 micromol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+ solution. RESULTS: Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKCbeta antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine. CONCLUSION/INTERPRETATION: These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKCbeta seems to play a role in mediating this effect.
Resumo:
The development of an asymmetric route for the synthesis of alpha,beta-butenolide building blocks, starting from commercially available D-mannitol, is described. The devised route was applied to a synthesis of the (S)-(–)-enantiomer of the antiviral natural product umbelactone, together with the construction of other synthetically useful lactone structures.
Resumo:
Polyol sugars, displaying a plurality Of hydroxyl groups, were shown to modulate tetra hydroxyborate (borate) cross-linking in lidocaine hydrochloride containing poly(vinyl alcohol) scini-solid hydrogels. Without polyol, demixing of borate cross-linked PVA hydrogels into two distinct phases was noticeable upon lidocaine hydrochloride addition, preventing further use as a topical System. D-Mannitol incorporation was found to be particularly suitable in cicumventing network constriction induced by ionic and pH effects upon adding the hydrochloride salt of lidocaine. A test formulation (4% w/v lidocaine HCl, 2% W/V D-mannitol, 10% w/v PVA and 2.5%, w/v THB) was shown to constitute an effective delivery system, which was characterised by an initial burst release and a drug release mechanism dependent on temperature, changing from a diffusion-controlled system to one with the properties of a reservoir system. The novel flow properties and innocuous adhesion of PVA-tetrahydroxyborate hydrogels Support their application for drug delivery to exposed epithelial surfaces, Such as lacerated wounds. Furthermore, addition of a polyol, such as mannitol, allows incorporation of soluble salt forms of active therapeutic agents by modulation of cross-linking density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective: To assess the effect of intestinal manipulation and mesenteric traction on gastro-intestinal function and postoperative recovery in patients undergoing abdominal aortic aneurysm (AAA) repair. Methods: Thirty-five patients undergoing AAA repair were randomised into 3 groups. Group I (n = II) had repair via retroperitoneal approach while Group II (n = 12) and Group III (n = 12) were repaired via transperitoneal approach with bowel packed within the peritoneal cavity or exteriorised in a bowel bag respectively. Gastric emptying was measured pre-operatively (day 0), day 1 and day 3 using paracetamol absorption test (PAT) and area under curve (P-AUC) was calculated. Intestinal permeability was measured using the Lactulose-Mannitol test. Results: Aneurysm size, operation time and PAT (on day 0 and day 3) were similar in the three groups. On day 1, the P-AUC was significantly higher in Group I, when compared with Group II and Group III (P = .02). Resumption of diet was also significantly earlier in Group I as compared to Group II and Group III. The intestinal permeability was significantly increased in Group II and Group III at day 1 when compared with day 0, with no significant increase in Group I. Retroperitoneal repair was also associated with significantly shorter intensive care unit (P = .04) and hospital stay (P = .047), when compared with the combined transperitoneal repair group (Group II and III). Conclusion: Retroperitoneal AAA repair minimises intestinal dysfunction and may lead to quicker patient recovery when compared to transperitoneal repair.
Resumo:
Intestinal permeability tests have been used to screen for a wide range of small intestinal diseases, including coeliac disease and enteric infections. Several probe molecules have been used to investigate intestinal permeability including monosaccharides, disaccharides, 51Cr-EDTA and polyethyleneglycol. While many factors may affect intestinal permeability tests, the use of two probe molecules, for example, lactulose and mannitol, and the expression of the result as a ratio minimises the effects of these extraneous factors. Rendering the test solution hyperosmolar was also found to increase the sensitivity of the test in detecting coeliac disease. Intestinal permeability is characteristically elevated in untreated coeliac disease, with a sensitivity of up to 96% for the dual sugar techniques. The reason for this is a consistent increase in the absorption of lactulose (via the paracellular route) due to increased "leakiness" of the intestine and a reduction in the absorption of mannitol (via the transcellular route) due to a reduction in surface area as a result of villous atrophy. The intestinal permeability test allows subjects to be selected for jejunal biopsy in whom the clinical features are compatible with coeliac disease and in timing a follow-up biopsy. It has been postulated that raised intestinal permeability may be involved in the pathogenesis of coeliac disease. Recently, serum measurements of the probe molecules may have a valuable role, particularly in paediatric patients. Sucrose permeability has also been proposed as an accurate marker of adult coeliac disease and shows promise as a noninvasive test.
Resumo:
Diverse parameters, including chaotropicity, can limit the function of cellular systems and thereby determine the extent of Earth's biosphere. Whereas parameters such as temperature, hydrophobicity, pressure, pH, Hofmeister effects, and water activity can be quantified via standard scales of measurement, the chao-/kosmotropic activities of environmentally ubiquitous substances have no widely accepted, universal scale. We developed an assay to determine and quantify chao-/kosmotropicity for 97 chemically diverse substances that can be universally applied to all solutes. This scale is numerically continuous for the solutes assayed (from +361kJkg-1mol-1 for chaotropes to -659kJkg-1mol-1 for kosmotropes) but there are key points that delineate (i) chaotropic from kosmotropic substances (i.e. chaotropes =+4; kosmotropes =-4kJkg-1mol-1); and (ii) chaotropic solutes that are readily water-soluble (log P<1.9) from hydrophobic substances that exert their chaotropic activity, by proxy, from within the hydrophobic domains of macromolecular systems (log P>1.9). Examples of chao-/kosmotropicity values are, for chaotropes: phenol +143, CaCl2 +92.2, MgCl2 +54.0, butanol +37.4, guanidine hydrochloride +31.9, urea +16.6, glycerol [>6.5M] +6.34, ethanol +5.93, fructose +4.56; for kosmotropes: proline -5.76, sucrose -6.92, dimethylsulphoxide (DMSO) -9.72, mannitol -6.69, trehalose -10.6, NaCl -11.0, glycine -14.2, ammonium sulfate -66.9, polyethylene glycol- (PEG-)1000 -126; and for relatively neutral solutes: methanol, +3.12, ethylene glycol +1.66, glucose +1.19, glycerol [<5M] +1.06, maltose -1.43 (kJkg-1mol-1). The data obtained correlate with solute interactions with, and structure-function changes in, enzymes and membranes. We discuss the implications for diverse fields including microbial ecology, biotechnology and astrobiology.