155 resultados para liver metabolism


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hepatic microcirculation is believed to cause variable cellular oxygenation within the organ. In this study a marker of cellular hypoxia was used to demonstrate liver oxygen tension gradients in vivo. Covalent binding of misonidazole adducts to cellular macromolecules is enhanced by hypoxia. Autoradiographs of liver from mice treated with radiolabeled misonidazole demonstrated enhanced binding of adducts within hepatocytes surrounding hepatic veins. Livers from both hypoxic and normal mice had characteristic autoradiographic grain patterns reflecting regional oxygen tension variation in vivo. Differential binding of misonidazole adducts formed in hypoxic cells could have an application in studies of liver physiology and biochemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown.

Methods: In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses.

Results: In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1).

Conclusions: Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of Fasciola hepatica infections of livestock in the absence of vaccines depends largely on the chemical triclabendazole (TCBZ) because it is effective against immature and adult parasites. Overdependence on a single drug and improper application is considered a significant factor in increasing global reports of fluke resistant to TCBZ. The mode(s) of action and biological target(s) of TCBZ are not confirmed, delaying detection and the monitoring of early TCBZ resistance. In this study, to further understand liver fluke response to TCBZ, the soluble proteomes of TCBZ-resistant and TCBZ-susceptible isolates of F. hepatica were compared with and without in vitro exposure to the metabolically active form of the parent drug triclabendazole sulphoxide (TCBZ-SO), via two-dimensional gel electrophoresis (2-DE). Gel image analysis revealed proteins displaying altered synthesis patterns and responses both between isolates and under TCBZ-SO exposure. These proteins were identified by mass spectrometry supported by a F. hepatica expressed sequence tag (EST) data set. The TCBZ responding proteins were grouped into three categories; structural proteins, energy metabolism proteins, and “stress” response proteins. This single proteomic investigation supported the reductionist experiments from many laboratories that collectively suggest TCBZ has a range of effects on liver fluke metabolism. Proteomics highlighted differences in the innate proteome profile of different fluke isolates that may influence future therapy and diagnostics design. Two of the TCBZ responding proteins, a glutathione transferase and a fatty acid binding protein, were cloned, produced as recombinants, and both found to bind TCBZ-SO at physiologically relevant concentrations, which may indicate a role in TCBZ metabolism and resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liver fluke remains an economically significant parasite of livestock and is emerging as an important zoonotic infection of humans. The incidence of the disease has increased in the last few years, as a possible consequence of changes to the World's climate. Future predictions suggest that this trend is likely to continue. Allied to the changing pattern of disease, reports of resistance to triclabendazole (TCBZ) have appeared in the literature, although they do not all represent genuine cases of resistance. Nevertheless, any reports of resistance are a concern, because triclabendazole is the only drug that has high activity against the migratory and damaging juvenile stages of infection. How to deal with the twin problems (of increasing incidence and drug resistance) is the overall theme of the session on “Trematodes: Fasciola hepatica epidemiology and control” and of this review to introduce the session.

Greater knowledge of fluke epidemiology and population genetics will highlight those regions where surveillance is most required and indicate how quickly resistant populations of fluke may arise. Models of disease risk are becoming increasingly sophisticated and precise, with more refined data analysis programmes and Geographic Information Systems (GIS) data. Recent improvements have been made in our understanding of the action of triclabendazole and the ways in which flukes have become resistant to it. While microtubules are the most likely target for drug action, tubulin mutations do not seem to be involved in the resistance mechanism. Rather, upregulation of drug uptake and metabolism processes appear to be more important and the data relating to them will be discussed. The information may help in the design of new treatment strategies or pinpoint potential molecular markers for monitoring fluke populations. Advances in the identification of novel targets for drugs and vaccines will be made by the various “-omics” technologies that are now being applied to Fasciola. A major area of concern in the current control of fasciolosis is the lack of reliable tests for the diagnosis of drug (TCBZ) resistance. This has led to inaccurate reports of resistance, which is hindering successful disease management, as farmers may be encouraged to switch to less effective drugs. Progress with the development of a number of new diagnostic tests will be reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2'-Beta-D-arabinouridine (AraU), the uridine analogue of the anticancer agent AraC, was synthesized and evaluated for antiviral activity and cytotoxicity. In addition, a series of AraU monophosphate prodrugs in the form of triester phosphoramidates (ProTides) were also synthesized and tested against a range of viruses, leukaemia and solid tumour cell lines. Unfortunately, neither the parent compound (AraU) nor any of its ProTides showed antiviral activity, nor potent inhibitory activity against any of the cancer cell lines. Therefore, the metabolism of AraU phosphoramidates to release AraU monophosphate was investigated. The results showed carboxypeptidase Y, hog liver esterase and crude CEM tumor cell extracts to hydrolyse the ester motif of phosphoramidates with subsequent loss of the aryl group, while molecular modelling studies suggested that the AraU l-alanine aminoacyl phosphate derivative might not be a good substrate for the phosphoramidase enzyme Hint-1. These findings are in agreement with the observed disappearance of intact prodrug and concomitant appearance of the corresponding phosphoramidate intermediate derivative in CEM cell extracts without measurable formation of araU monophosphate. These findings may explain the poor antiviral/cytostatic potential of the prodrugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.

Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.

Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.

Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.

Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated, using the single-pass isolated perfused rat liver preparation, whether the centrilobular location of hepatic oxidative drug metabolism could be a contributing factor to the marked sensitivity of drug oxidation to hypoxia. Livers (N = 7) were each perfused for 130 min with 2 micrograms/mL (+)-propranolol, a drug metabolized almost entirely by oxidation in the rat. The direction of flow was reversed after 60 min, the order of flow direction being randomized. Normal oxygenation was used during the first 30 min of antegrade and of retrograde perfusion, but in the second 30 min perfusate was equilibrated with a N2/O2 mixture designed to reduce hepatic oxygen delivery by half. During normal oxygenation there was no significant difference between antegrade and retrograde perfusion in hepatic oxygen delivery and physiological parameters such as oxygen consumption and extraction, perfusion pressure and bile flow. During hypoxia, mean oxygen delivery was slightly lower with retrograde perfusion (retrograde: mean = 2.37 mumol/min/g liver, range = 1.56-3.17; antegrade: mean = 2.90 mumol/min/g liver, range = 1.96-4.08; P = 0.04), but there was no significant difference in physiological parameters within each liver (P > 0.05). Propranolol clearance during normal oxygenation was similar to the perfusion rate (10 mL/min) and was the same for both directions of perfusion (antegrade 9.88 +/- 0.07 mL/min, retrograde 9.88 +/- 0.13 mL/min, P > 0.05). Hypoxia reduced propranolol clearance substantially, but the decrease was significantly greater with antegrade perfusion (5.65 +/- 1.89 mL/min) than with retrograde perfusion (6.76 +/- 1.95 mL/min, P = 0.014). Oxidative drug metabolism is located primarily in the centrilobular zone and sinusoidal oxygen concentration is lowest in the "downstream" zone with both antegrade and retrograde perfusion. These findings suggest that the centrilobular location of propranolol metabolism may influence the effect of hypoxia on propranolol elimination, but is not a major contributor to the marked sensitivity of propranolol elimination to hypoxia antegrade perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schistosomiasis is a significant cause of human morbidity and mortality. We performed a genome-wide transcriptional survey of liver biopsies obtained from Chinese patients with chronic schistosomiasis only, or chronic schistosomiasis with a current or past history of viral hepatitis B. Both disease groups were compared with patients with no prior history or indicators of any liver disease. Analysis showed in the main, downregulation in gene expression, particularly those involved in signal transduction via EIF2 signalling and mTOR signalling, as were genes associated with cellular remodelling. Focusing on immune associated pathways, genes were generally downregulated. However, a set of three genes associated with granulocytes, MMP7, CLDN7, CXCL6 were upregulated. Differential gene profiles unique to schistosomiasis included the gene Granulin which was decreased despite being generally considered a marker for liver disease, and IGBP2 which is associated with increased liver size, and was the most upregulated gene in schistosomiasis only patients, all of which presented with hepatomegaly. The unique features of gene expression, in conjunction with previous reports in the murine model of the cellular composition of granulomas, granuloma formation and recovery, provide an increased understanding of the molecular immunopathology and general physiological processes underlying hepatic schistosomiasis.