30 resultados para hyperpolarized gases, He-3, MRI, lung, administration unit
Resumo:
Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide [GIP]) is an important incretin hormone secreted by endocrine K-cells in response to nutrient ingestion. In this study, we investigated the effects of chemical ablation of GIP receptor (GIP-R) action on aspects of obesity-related diabetes using a stable and specific GIP-R antagonist, (Pro3)GIP. Young adult ob/ob mice received once-daily intraperitoneal injections of saline vehicle or (Pro3)GIP over an 11-day period. Nonfasting plasma glucose levels and the overall glycemic excursion (area under the curve) to a glucose load were significantly reduced (1.6-fold; P <0.05) in (Pro3)GIP-treated mice compared with controls. GIP-R ablation also significantly lowered overall plasma glucose (1.4-fold; P <0.05) and insulin (1.5-fold; P <0.05) responses to feeding. These changes were associated with significantly enhanced (1.6-fold; P <0.05) insulin sensitivity in the (Pro3)GIP-treated group. Daily injection of (Pro3)GIP reduced pancreatic insulin content (1.3-fold; P <0.05) and partially corrected the obesity-related islet hypertrophy and ß-cell hyperplasia of ob/ob mice. These comprehensive beneficial effects of (Pro3)GIP were reversed 9 days after cessation of treatment and were independent of food intake and body weight, which were unchanged. These studies highlight a role for GIP in obesity-related glucose intolerance and emphasize the potential of specific GIP-R antagonists as a new class of drugs for the alleviation of insulin resistance and treatment of type 2 diabetes.
Resumo:
Previous work by ourselves and by others has demonstrated that protons with a linear energy transfer (LET) about 30 V mu m(-1) are more effective at killing cells than doubly charged particles of the same LET. In this work we show that by using deuterons, which have about twice the range of protons with the same LET, it is possible to extend measurements of the RBE of singly charged particles to higher LET (up to 50 keV mu m(-1)). We report the design and use of a new arrangement for irradiating V79 mammalian cells. Cell survival. measurements have been made using protons in the energy range 1.0-3.7 MeV, deuterons in the energy range 0.9-3.4 MeV and He-3(2+) ions in the energy range 3.4-6.9 MeV;. This corresponds to volume-averaged LET (within the cell nucleus) between 10 and 28 keV mu m(-1) for protons, 18-50 keV mu m(-1) for deuterons, and 59-106 keV mu m(-1) for helium ions. Our results show no difference in the effectiveness of protons and deuterons matched for LET. However, for LET above about 30 keV mu m(-1) singly charged particles are more effective at inactivating cells than doubly-charged particles of the same LET and that this difference can be understood in terms of the radial dose distribution around the primary ion track.
Resumo:
Background: Preclinical evidence from lung cancer cell lines and animal models suggest that statins could have anticancer properties. We investigated whether statin users had reduced risk of cancer-specific mortality in a population based cohort of lung cancer patients.
Methods: Newly diagnosed lung cancer patients, from 1998 to 2009, were identified from English cancer registry data and linked to the UK Clinical Practice Research Datalink, providing prescription records, and to Office of National Statistics mortality data up to 2012. Cox regression models were used to calculate hazard ratios (HR) for cancer-specific mortality and 95% confidence intervals (CIs) by statin use before and after diagnosis and to adjust these HRs for potential confounders.
Results: In 3,638 lung cancer patients, there was some evidence that statin use after diagnosis was associated with reduced lung cancer-specific mortality (adjusted HR=0.89, 95% CI 0.78, 1.02; P=0.09). Associations were more marked after 12 prescriptions (adjusted HR=0.81, 95% CI 0.67, 0.98; P=0.03) and when lipophilic statins were investigated (adjusted HR=0.81, 95% CI 0.70, 0.94; P=0.01) but were attenuated in some sensitivity analyses. Furthermore, in 11,051 lung cancer patients, statin use before diagnosis was associated with reduced lung cancer-specific mortality (adjusted HR=0.88, 95% CI, 0.83, 0.93; P<0.001).
Conclusions: There was some evidence that lung cancer patients who used statins, and particularly simvastatin, had reduced rates of cancer-specific mortality.
Impact: These findings should first be confirmed in observational studies, but provide some support for conducting randomized controlled trials of simvastatin as adjuvant cancer therapy in lung cancer patients.
Resumo:
Background
Preclinical evidence suggests that aspirin may inhibit lung cancer progression. In a large cohort of lung cancer patients, we investigated whether low-dose aspirin use was associated with a reduction in the risk of lung cancer-specific mortality.
Methods
We identified lung cancer patients from English cancer registries diagnosed between 1998 to 2009 from the National Cancer Data Repository. Medication usage was obtained from linkages to the UK Clinical Practice Research Datalink and lung cancer-specific deaths were identified from Office of National Statistics mortality data. Hazard ratios (HR) and 95 % confidence intervals (CI) for the association between low-dose aspirin use (before and after diagnosis) and risk of lung cancer-specific mortality were calculated using Cox regression models.
Results
A total of 14,735 lung cancer patients were identified during the study period. In analysis of 3,635 lung cancer patients, there was no suggestion of an association between low-dose aspirin use after diagnosis and cancer-specific mortality (adjusted HR = 0.96, 95 % CI: 0.85, 1.09). Similarly, no association was evident for low-dose aspirin use before diagnosis and cancer-specific mortality (adjusted HR = 1.00, 95 % CI: 0.95, 1.05). Associations were comparable by duration of use and for all-cause mortality.
Conclusion
Overall, we found little evidence of a protective association between low-dose aspirin use and cancer-specific mortality in a large population-based lung cancer cohort.
Resumo:
Environmental (222)radon exposure is a human health concern, and many studies demonstrate that very low doses of high LET alpha-particle irradiation initiate deleterious genetic consequences in both radiated and non-irradiated bystander cells. One consequence, radiation-induced genomic instability (RIGI), is a hallmark of tumorigenesis and is often assessed by measuring delayed chromosomal aberrations We utilised a technique that facilitates transient immobilization of primary lymphocytes for targeted microbeam irradiation and have reported that environmentally relevant doses, e.g. a single He-3(2+) particle traversal to a single cell, are sufficient to Induce RIGI Herein we sought to determine differences in radiation response in lymphocytes isolated from five healthy male donors Primary lymphocytes were irradiated with a single particle per cell nucleus. We found evidence for inter-individual variation in radiation response (Rid, measured as delayed chromosome aberrations) Although this was not highly significant, it was possibly masked by high levels of intra-individual variation While there are many studies showing a link between genetic predisposition and RIGI, there are few studies linking genetic background with bystander effects in normal human lymphocytes In an attempt to investigate inter-individual variation in the induction of bystander effects, primary lymphocytes were irradiated with a single particle under conditions where fractions of the population were traversed We showed a marked genotype-dependent bystander response in one donor after exposure to 15% of the population The findings may also be regarded as a radiation-induced genotype-dependent bystander effect triggering an instability phenotype (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.
Resumo:
AIMS/HYPOTHESIS: This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide.
METHODS: Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice.
RESULTS: In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small.
CONCLUSIONS/INTERPRETATION: These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.
Resumo:
Recent experimental data for fully differential cross sections have been compared to various continuum-distorted-wave eikonal-initial-state models without much success, despite good agreement with double-differential cross sections. A four-body model is formulated here and results are presented both when the internuclear potential is omitted and when it is included. They are compared with recent experimental data for fully differential cross sections for 3.6 MeV/u Au-P(Z)++He collisions, Z(P)=24,53.
Resumo:
Leukocyte-derived matrix metalloproteinases (MMP) are implicated in the tissue destruction characteristic of tuberculosis (TB). The contribution of lung stromal cells to MMP activity in TB is unknown. Oncostatin M (OSM) is an important stimulus to extrapulmonary stromal MMP induction, but its role in regulation of pulmonary MMP secretion or pathophysiology of TB is unknown. We investigated OSM secretion from Mycobacterium tuberculosis (Mtb)-infected human monocytes/macrophages and the networking effects of such OSM on lung fibroblast MMP secretion. Mtb increased monocyte OSM secretion dose dependently in vitro. In vivo tuberculous granulomas immunostained positively for OSM. Further, conditioned media from Mtb-infected monocytes (CoMTb) induced monocyte OSM secretion (670 ± 55 versus 166 ± 14 pg/mL in controls), implicating an autocrine loop. Mtb-induced OSM secretion was prostaglandin (PG) sensitive, and required activation of surface G-protein coupled receptors. OSM induction was ERK MAP kinase dependent, p38-requiring but JNK-independent. OSM synergized with TNF-, a key cytokine in TB granuloma formation, to stimulate pulmonary fibroblast MMP-1/-3 secretion, while suppressing secretion of tissue inhibitors of metalloproteinases-1/-2. In summary, Mtb infection of monocytes results in PG-dependent OSM secretion, which synergizes with TNF- to drive functionally unopposed fibroblast MMP-1/-3 secretion, demonstrating a previously unrecognized role for OSM in TB.
Resumo:
Effects of chemical ablation of the GIP and GLP-1 receptors on metabolic aspects of obesity-diabetes were investigated using the stable receptor antagonists (Pro(3))GIP and exendin(9-39)amide. Ob/ob mice received a daily i.p. injection of saline vehicle, (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides over a 14-day period. Non-fasting plasma glucose levels were significantly (p <0.05) lower in (Pro(3))GIP-treated mice compared to control mice after just 9 days of treatment. (Pro(3))GIP-treated mice also displayed significantly lower plasma glucose concentrations in response to feeding and intraperitoneal administration of either glucose or insulin (p <0.05 to p <0.001). The (Pro(3))GIP-treated group also exhibited significantly (p <0.05) reduced pancreatic insulin content. Acute administration of exendin(9-39) amide immediately prior to re-feeding completely annulled the beneficial effects of sub-chronic (Pro(3))GIP treatment, but non-fasting concentrations of active GLP-1 were unchanged. Combined sub-chronic administration of (Pro(3)GIP) with exendin(9-39)amide revealed no beneficial effects. Similarly, daily administration of exendin(9-39)amide alone had no significant effects on any of the metabolic parameters measured. These studies highlight an important role for GIP in obesity-related forms of diabetes, suggesting the possible involvement of GLP-1 in the beneficial actions of GIP receptor antagonism.
Resumo:
Aims/hypothesis Ablation of gastric inhibitory polypeptide ( GIP) receptor action is reported to protect against obesity and associated metabolic abnormalities. The aim of this study was to use prediabetic ob/ob mice to examine whether 60 days of chemical GIP receptor ablation with (Pro(3)) GIP is able to counter the development of genetic obesity-related diabetes.