74 resultados para grafene , fermioni , dirac , meccanica quantistica , ASPEC
Resumo:
Multiconfigurational Dirac-Fock calculations are reported for 656 energy levels and the 214 840 electric dipole (E I), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities in oxygen-like Fe xix. The spectroscopic notations as well as the total transition probabilities from each energy level are provided. Good agreement is found with data compiled by NIST.
Resumo:
We analyze a system inwhich, due to entanglement between the spin and spatial degrees of freedom, the reduced transmitted state has the shape of the freely propagating pulse translated in the complex coordinate plane. In the case an apparently “superluminal” advancement of the pulse, the delay amplitude distribution is found to be a peculiar approximation to the Dirac d function, and the transmission coefficient exhibits a well-defined superoscillatory window. Analogies with potential tunneling and Wheeler’s delayed choice experiment are highlighted.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
Abstract. The possibility of using pumice aggregates for concrete in structural applications is discussed. In particular, the mix design of lightweight concrete for the manufacturing masonry units having proper strength, is discussed. Moreover, the design of the unit shape according to the technical code requirements and making it possible to arrange reinforcing steel bars is described. Reinforced bearing masonry walls, made with the concrete units in question, were manufactured and tests on the panels and on the designed units were carried out. For comparison, tests on concrete units and structural elements were carried out after the substitution of pumice aggregates with ordinary lightweight aggregates, proving that pumice can be considered an alternative to them. Sommario. L’uso della pomice come inerte per il confezionamento di calcestruzzo è poco diffuso sebbene essa sia stata usata già in antiche costruzioni come il Pantheon in Roma. In questo studio si affronta la possibilità di realizzare blocchi in calcestruzzo alleggerito con granuli di pomice. I blocchi, progettati e realizzati secondo le indicazioni normative correnti, sono stati usati per realizzare pannelli murari armati da sottoporre a carichi ciclici orizzontali. I risultati ottenuti, messi a confronto con quelli di pannelli realizzati con blocchi in cls alleggerito con argilla espansa, hanno mostrato la possibilità di utilizzare la pomice come validissima alternativa all’argilla espansa.
Resumo:
Abstract. The possibility of using pumice aggregates for concrete in structural applications is discussed. In particular, the mix design of lightweight concrete for the manufacturing masonry units having proper strength, is discussed. Moreover, the design of the unit shape according to the technical code requirements and making it possible to arrange reinforcing steel bars is described. Reinforced bearing masonry walls, made with the concrete units in question, were manufactured and tests on the panels and on the designed units were carried out. For comparison, tests on concrete units and structural elements were carried out after the substitution of pumice aggregates with ordinary lightweight aggregates, proving that pumice can be considered an alternative to them. Sommario. L’uso della pomice come inerte per il confezionamento di calcestruzzo è poco diffuso sebbene essa sia stata usata già in antiche costruzioni come il Pantheon in Roma. In questo studio si affronta la possibilità di realizzare blocchi in calcestruzzo alleggerito con granuli di pomice. I blocchi, progettati e realizzati secondo le indicazioni normative correnti, sono stati usati per realizzare pannelli murari armati da sottoporre a carichi ciclici orizzontali. I risultati ottenuti, messi a confronto con quelli di pannelli realizzati con blocchi in cls alleggerito con argilla espansa, hanno mostrato la possibilità di utilizzare la pomice come validissima alternativa all’argilla espansa.
Resumo:
We report calculations of energy levels and oscillator strengths for transitions in W XL, undertaken with the general-purpose relativistic atomic structure package (GRASP) and flexible atomic code (FAC). Comparisons are made with existing results and the accuracy of the data is assessed. Discrepancies with the most recent results of S. Aggarwal et al. (Can. J. Phys. 91, 394 (2013)) are up to 0.4 Ryd and up to two orders of magnitude for energy levels and oscillator strengths, respectively. Discrepancies for lifetimes are even larger, up to four orders of magnitude for some levels. Our energy levels are estimated to be accurate to better than 0.5% (i.e., 0.2 Ryd), whereas results for oscillator strengths and lifetimes should be accurate to better than 20%.
Resumo:
Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe$^{2+}$ which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al. [Ap.J.Lett, 718, L189, (2010)] who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.
Resumo:
We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.
Resumo:
Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound–bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.
Resumo:
We present a technique for measuring the radiative lifetimes of metastable states of negative ions that involves the use of a heavy-ion storage ring. The method has been applied to investigate the radiative decay of the np3 2P1/2 levels of Te–(n=5) and Se–(n=4) and the 3p3 2D state of Si– for which the J=3/2 and 5/2 levels were unresolved. All of these states are metastable and decay primarily by emission of E2 and M1 radiation. Multi Configuration Dirac-Hartree-Fock calculations of rates for the transitions in Te– and Se– yielded lifetimes of 0.45 s and 4.7 s, respectively. The measured values agree well with these predicted values. In the case of the 2D state of Si–, however, our measurement was only able to set a lower limit on the lifetime. The upper limit of the lifetime that can be measured with our apparatus is set by how long the ions can be stored in the ring, a limit determined by the rate of collisional detachment. Our lower limit of 1 min for the lifetime of the 2D state is consistent with both the calculated lifetimes of 162 s for the 2D3/2 level and 27.3 h for the 2D5/2 level reported by O'Malley and Beck and 14.5 h and 12.5 h, respectively, from our Breit-Pauli calculations.
Resumo:
Effective collision strengths for transitions among the lowest 97 fine-structure levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(2), 3s3p(3), 3s(2)3p3d, 3p(4), 3s3p(2)3d and 3s(2)3d(2) configurations of Fe XIII have been calculated using the fully relativistic Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2004). Resonances have been resolved in the threshold region, and results are reported over a wide electron temperature range up to log T-e = 6.8 K. Comparisons are made with the earlier available R-matrix results of Gupta & Tayal (1998), and the accuracy of the data is assessed.
Resumo:
Collision strengths for 4005 transitions among the lowest 90 levels of the (1s(2)2s(2)2p(6)) 3s(2)3p(5), 3s3p(6), 3s(2)3p(4)3d, 3s3p(5)3d and 3s(2)3p(3)3d(2) configurations of Fe X have been calculated using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant, over a wide energy range up to 210 Ryd. Resonances have been resolved in the threshold region, and effective collision strengths have been obtained over a wide temperature range up to 107 K. The present calculations should represent a significant improvement ( in both range and accuracy) over the earlier available results of Bhatia & Doschek and Pelan & Berrington. Based on several comparisons, the accuracy of our data is assessed to be better than 20%, for a majority of transitions.
Resumo:
Energies for the lowest 49 levels among the 1s(2) and 1snl (n = 2-5) configurations of Ar XVII have been calculated using the GRASP code of Dyall et al. (1989, Comput. Phys. Comm., 55, 424). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Furthermore, collision strengths have also been calculated for all the 1176 transitions among the above 49 levels using the Dirac Atomic R-matrix Code (DARC) of Norrington & Grant (2005, Comput. Phys. Commun., in preparation), over a wide energy range up to 580 Ryd. Resonances have been resolved in the threshold region, and effective collision strengths have been obtained over a wide temperature range up to log T-e = 7.2 K. Comparisons are made with the limited results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 0.1%, whereas results for other parameters are probably accurate to better than 20%.