37 resultados para gastric cancer
Resumo:
Background Gastric cancer is a leading cause of cancer-related mortality, and current treatment outcomes for advanced disease remain poor. HER2 has been identified as a potential candidate for targeted therapy in gastric cancers displaying HER2 gene amplification and protein overexpression.
Resumo:
Aim: Accumulating evidence indicates that RUNX3 is an important tumour suppressor that is inactivated in many cancer types. This study aimed to assess the role of microRNA (miRNA) in the regulation of RUNX3.
Resumo:
Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.
Resumo:
The aim of our study was to investigate whether intakes of total fat and fat subtypes were associated with esophageal adenocarcinoma (EAC), esophageal squamous cell carcinoma (ESCC), gastric cardia or gastric noncardia adenocarcinoma. From 1995–1996, dietary intake data was reported by 494,978 participants of the NIH-AARP cohort. The 630 EAC, 215 ESCC, 454 gastric cardia and 501 gastric noncardia adenocarcinomas accrued to the cohort. Cox proportional hazards regression was used to examine the association between the dietary fat intakes, whilst adjusting for potential confounders. Although apparent associations were observed in energy-adjusted models, multivariate adjustment attenuated results to null [e.g., EAC energy adjusted hazard ratio (HR) and 95% confidence interval (95% CI) 1.66 (1.27–2.18) p for trend <0.01; EAC multivariate adjusted HR (95% CI) 1.17 (0.84–1.64) p for trend 5 0.58]. Similar patterns were also observed for fat subtypes [e.g., EAC saturated fat, energy adjusted HR (95% CI) 1.79 (1.37–2.33) p for trend <0.01; EAC saturated fat, multivariate adjusted HR (95% CI) 1.27 (0.91–1.78) p for trend 5 0.28]. However, in multivariate models an inverse association for polyunsaturated fat (continuous) was seen for EAC in subjects with a body mass index (BMI) in the normal range (18.5–<25 kg/m2) [HR (95% CI) 0.76 (0.63–0.92)], that was not present in overweight subjects [HR (95% CI) 1.04 (0.96–1.14)], or in unstratified analysis [HR (95% CI) 0.97 (0.90–1.05)]. p for interaction 5 0.02. Overall, we found null associations between the dietary fat intakes with esophageal or gastric cancer risk; although a protective effect of polyunsaturated fat intake was seen for EAC in subjects with a normal BMI.
Resumo:
BACKGROUND & AIMS:
Gastric cancer (GC) is a heterogeneous disease comprising multiple subtypes that have distinct biological properties and effects in patients. We sought to identify new, intrinsic subtypes of GC by gene expression analysis of a large panel of GC cell lines. We tested if these subtypes might be associated with differences in patient survival times and responses to various standard-of-care cytotoxic drugs.
METHODS:
We analyzed gene expression profiles for 37 GC cell lines to identify intrinsic GC subtypes. These subtypes were validated in primary tumors from 521 patients in 4 independent cohorts, where the subtypes were determined by either expression profiling or subtype-specific immunohistochemical markers (LGALS4, CDH17). In vitro sensitivity to 3 chemotherapy drugs (5-fluorouracil, cisplatin, oxaliplatin) was also assessed.
RESULTS:
Unsupervised cell line analysis identified 2 major intrinsic genomic subtypes (G-INT and G-DIF) that had distinct patterns of gene expression. The intrinsic subtypes, but not subtypes based on Lauren's histopathologic classification, were prognostic of survival, based on univariate and multivariate analysis in multiple patient cohorts. The G-INT cell lines were significantly more sensitive to 5-fluorouracil and oxaliplatin, but more resistant to cisplatin, than the G-DIF cell lines. In patients, intrinsic subtypes were associated with survival time following adjuvant, 5-fluorouracil-based therapy.
CONCLUSIONS:
Intrinsic subtypes of GC, based on distinct patterns of expression, are associated with patient survival and response to chemotherapy. Classification of GC based on intrinsic subtypes might be used to determine prognosis and customize therapy.
Resumo:
Gastric cancer is a leading cause of cancer-related mortality, and chemotherapeutic options are currently limited. PIM1 kinase, an oncogene that promotes tumorigenesis in several cancer types, might represent a novel therapeutic target in gastric cancer.
Resumo:
Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.
Resumo:
BACKGROUND: Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed comprehensive DNA methylation profiling of a well-characterised series of primary GC.
METHODS: The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was investigated using the Illumina GoldenGate Methylation Panel I assay on DNA extracted from 60 gastric tumors and matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture model and investigated for associations with clinicopathological and molecular features including age, Helicobacter pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations.
RESULTS: A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively. Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in CpG islands and marked for polycomb occupancy.
CONCLUSIONS: High-throughput methylation analysis implicates genes involved in embryonic development and hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly methylated group showing some features consistent with a CpG island methylator phenotype.
Resumo:
The surface marker CD44 has been identified as one of several markers associated with cancer stem cells (CSC) in solid tumors, but its ubiquitous expression in many cell types, including hematopoietic cells, has hindered its use in targeting CSCs. In this study, 28 paired primary tumor and adjacent nontumor gastric tissue samples were analyzed for cell surface protein expression. Cells that expressed pan-CD44 were found to occur at significantly higher frequency in gastric tumor tissues. We identified CD44v8-10 as the predominant CD44 variant expressed in gastric cancer cells and verified its role as a gastric CSC marker by limiting dilution and serial transplantation assays. Parallel experiments using CD133 failed to enrich for gastric CSCs. Analyses of another 26 primary samples showed significant CD44v8-10 upregulation in gastric tumor sites. Exogenous expression of CD44v8-10 but not CD44 standard (CD44s) increased the frequency of tumor initiation in immunocompromised mice. Reciprocal silencing of total CD44 resulted in reduced tumor-initiating potential of gastric cancer cells that could be rescued by CD44v8-10 but not CD44s expression. Our findings provide important functional evidence that CD44v8-10 marks human gastric CSCs and contributes to tumor initiation, possibly through enhancing oxidative stress defense. In addition, we showed that CD44v8-10 expression is low in normal tissues. Because CD44 also marks CSCs of numerous human cancers, many of which may also overexpress CD44v8-10, CD44v8-10 may provide an avenue to target CSCs in other human cancers.
Resumo:
Members of the human epidermal receptor (HER) family are frequently associated with aggressive disease and poor prognosis in multiple malignancies. Lapatinib is a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and HER-2. This study evaluated the therapeutic potential of lapatinib, alone and in combination with SN-38, the active metabolite of irinotecan (CPT-11), in colon and gastric cancer cell lines. Concentration-dependent antiproliferative effects of both lapatinib and SN-38 were observed in all colon and gastric cancer cell lines tested but varied significantly between individual cell lines (lapatinib range 0.08-11.7 muM; SN-38 range 3.6-256 nM). Lapatinib potently inhibited the growth of a HER-2 overexpressing gastric cancer cell line and demonstrated moderate activity in gastric and colon cancer cells with detectable HER-2 expression. The combination of lapatinib and SN-38 interacted synergistically to inhibit cell proliferation in all colon and gastric cancer cell lines tested. Cotreatment with lapatinib and SN-38 also resulted in enhanced cell cycle arrest and the induction of apoptosis with subsequent cellular pharmacokinetic analysis demonstrating that lapatinib promoted the increased intracellular accumulation and retention of SN-38 when compared to SN-38 treatment alone. Finally, the combination of lapatinib and CPT-11 demonstrated synergistic antitumor efficacy in the LoVo colon cancer mouse xenograft model with no apparent increase in toxicity compared to CPT-11 monotherapy. These results provide compelling preclinical rationale indicating lapatinib to be a potentially efficacious chemotherapeutic combination partner for irinotecan in the treatment of gastrointestinal carcinomas.
Resumo:
Lemur tyrosine kinase-3 (LMTK3) was recently identified as an estrogen receptor (ER)-α modulator related to endocrine therapy resistance, and its polymorphisms rs9989661 (T>C) T/T genotype and rs8108419 (G>A) G/G or A/G genotype predicted improved outcomes in breast cancer. Because different predominant ER distributions link to breast and gastric cancer and little is known of the prognostic role of LMTK3 in gastric cancer, this study was carried out to clarify the prognostic role of these polymorphisms in gastric cancer. One-hundred and sixty-nine Japanese and 137 U.S. patients with localized gastric adenocarcinoma were enrolled. Genomic DNA was extracted from blood or tissue, and all samples were analyzed by PCR-based direct DNA sequencing. Overall, these polymorphisms were not associated with survival in both cohorts. When gender was considered, in multivariate analysis, harboring rs9989661 T/T genotype was associated with disease-free survival [HR, 4.37; 95% confidence interval (CI), 2.08-9.18; P < 0.0001] and overall survival (OS; HR, 3.69; 95% CI, 1.65-8.24; P = 0.0014) in the Japanese males and time to recurrence (HR, 7.29; 95% CI, 1.07-49.80; P = 0.043) in the U.S. females. Meanwhile, harboring rs8108419 G/G genotype was associated with OS in the Japanese females (HR, 3.04; 95% CI, 1.08-8.56; P = 0.035) and the U.S. males (HR, 3.39; 95% CI, 1.31-8.80; P = 0.012). The prognostic role of these polymorphisms may be negative in gastric cancer. These findings suggest that the estrogen pathway may play a prognostic role in patients with gastric cancer but this may be dependent on the regional differences both in physiology and genetic alterations of gastric cancer.