59 resultados para finite square well potential
Resumo:
A double-well loaded with bosonic atoms represents an ideal candidate to simulate some of the most interesting aspects in the phenomenology of thermalisation and equilibration. Here we report an exhaustive analysis of the dynamics and steady state properties of such a system locally in contact with different temperature reservoirs. We show that thermalisation only occurs 'accidentally'. We further examine the nonclassical features and energy fluxes implied by the dynamics of the double-well system, thus exploring its finite-time thermodynamics in relation to the settlement of nonclassical correlations between the wells.
Resumo:
The states of a boson pair in a one-dimensional double-well potential are investigated. Properties of the ground and lowest excited states of this system are studied, including the two-particle wave function, momentum pair distribution, and entanglement. The effects of varying both the barrier height and the effective interaction strength are investigated.
Resumo:
By means of extensive first-principles calculations we studied the ferroelectric phase transition and the associated isotope effect in KH2PO4 (KDP). Our calculations revealed that the spontaneous polarization of the ferroelectric phase is due to electronic charge redistributions and ionic displacements which are a consequence of proton ordering, and not vice versa. The experimentally observed double-peaked proton distribution in the paraelectric phase cannot be explained by a dynamics of only protons. This requires, instead, collective displacements within clusters that include also the heavier ions. These tunneling clusters can explain the recent evidence of tunneling obtained from Compton scattering measurements. The sole effect of mass change upon deuteration is not sufficient to explain the huge isotope effect. Instead, we find that structural modifications deeply connected with the chemistry of the H bonds produce a feedback effect on tunneling that strongly enhances the phenomenon. The resulting influence of the geometric changes on the isotope effect agrees with experimental data from neutron scattering. Calculations under pressure allowed us to analyze the issue of universality in the disappearance of ferroelectricity upon compression. Compressing DKDP so that the distance between the two peaks in the deuteron distribution is the same as for protons in KDP, corresponds to a modification of the underlying double-well potential, which becomes 23 meV shallower. This energy difference is what is required to modify the O-O distance in such a way as to have the same distribution for protons and deuterons. At the high pressures required experimentally, the above feedback mechanism is crucial to explain the magnitude of the geometrical effect.
Resumo:
We show that an electrostatic qubit located near a Bose-Einstein condensate trapped in a symmetric double-well potential can be used to measure the duration the qubit has spent in one of its quantum states. The strong, medium, and weak measurement regimes are analyzed. The analogy between the residence and the traversal (tunnelling) times is highlighted.
Resumo:
We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubit's density matrix. The qubit's evolution exhibits a slow (proportional to 1/root t) damping of the qubit's coherence term, which however turns to be a Gaussian one in the case of static qubit. This is in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.
Resumo:
Tetrahexahedral Pd nanocrystals (THH Pd NCs) were prepared on a glassy carbon electrode using a programmed square-wave potential electrodeposition method, and modified by Bi adatoms with a range of coverages via the cyclic voltammetry method. The reactivity of the catalysts prepared towards ethanol electrooxidation reaction (EOR) was studied in alkaline medium at various temperatures and under other conditions that practical fuel cells operate. Significant activity enhancements were observed for the Bi-modified THH Pd NCs with an optimum Bi coverage (θBi) of around 0.68 being obtained. Furthermore, it was found that increasing temperature from 25 ºC to 60 ºC enhances the reactivity significantly. The general kinetics data of EOR on Bi-decorated and bare THH Pd NCs have also been obtained, from the activation energy calculated based on Arrhenius plots, and compared. At the optimum Bi coverage, an enhancement in the activity of almost 3 times was achieved, and the corresponding activation energy was found to be reduced significantly.
Resumo:
The standard local density approximation and generalized gradient approximations fail to properly describe the dissociation of an electron pair bond, yielding large errors (on the order of 50 kcal/mol) at long bond distances. To remedy this failure, a self-consistent Kohn-Sham (KS) method is proposed with the exchange-correlation (xc) energy and potential depending on both occupied and virtual KS orbitals. The xc energy functional of Buijse and Baerends [Mol. Phys. 100, 401 (2002); Phys. Rev. Lett. 87, 133004 (2001)] is employed, which, based on an ansatz for the xc-hole amplitude, is able to reproduce the important dynamical and nondynamical effects of Coulomb correlation through the efficient use of virtual orbitals. Self-consistent calculations require the corresponding xc potential to be obtained, to which end the optimized effective potential (OEP) method is used within the common energy denominator approximation for the static orbital Green's function. The problem of the asymptotic divergence of the xc potential of the OEP when a finite number of virtual orbitals is used is addressed. The self-consistent calculations reproduce very well the entire H-2 potential curve, describing correctly the gradual buildup of strong left-right correlation in stretched H-2. (C) 2003 American Institute of Physics.
Resumo:
Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.
Resumo:
The objective of the present paper was to review the literature investigating the potential relationship between fruit and vegetables (FV) and psychological well-being. The rising prevalence of mental ill health is causing considerable societal burden. Inexpensive and effective strategies are therefore required to improve the psychological well-being of the population, and to reduce the negative impact of mental health problems. A growing body of literature suggests that dietary intake may have the potential to influence psychological well-being. For example, studies have suggested that particular dietary constituents, including vitamins and minerals, might be beneficial to psychological health. However, in order to better reflect normal dietary intake, health-based research has increasingly begun to focus on whole foods and dietary patterns, rather than individual nutrients. One food group that has received increasing attention with regard to psychological health is FV. This is probably a result of the strong evidence base, which exists in relation to their protective association with a number of chronic diseases, as well as the fact that they are a rich source of some of the nutrients which have been linked to psychological health. While some promising findings exist with regards to FV intake and psychological well-being, overall, results are inconsistent. Possible reasons for this, such as methodological issues related to study design and the measurement of psychological well-being and FV intake, are discussed within this review. Based on the predominantly observational nature of existing literature, the present paper concludes that future well-designed randomised controlled trials are required to investigate the relationship further.
Resumo:
Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.
Resumo:
The relative resistance of 15 winter barley, three winter wheat and three winter oat cultivars on the UK recommended list 2003 and two spring wheat cultivars on the Irish 2003 recommended list were evaluated using Microdochium nivale in detached leaf assays to further understand components of partial disease resistance (PDR) and Fusarium head blight (FHB) resistance across cereal species. Barley cultivars showed incubation periods comparable to, and latent periods longer than the most FHB resistant Irish and UK wheat cultivars evaluated. In addition, lesions on barley differed from those on wheat as they were not visibly chlorotic when placed over a light box until sporulation occurred, in contrast to wheat cultivars where chlorosis of the infected area occurred when lesions first developed. The pattern of delayed chlorosis of the infected leaf tissue and longer latent periods indicate that resistances are expressed in barley after the incubation period is observed, and that these temporarily arrest the development of mycelium and sporulation. Incubation periods were longer for oats compared to barley or wheat cultivars. However, oat cultivars differed from both wheat and barley in that mycelial growth was observed before obvious tissue damage was detected under macroscopic examination, indicating tolerance of infection rather than inhibition of pathogen development, and morphology of sporodochia differed, appearing less well developed and being much less abundant. Longer latent periods have previously been related to greater FHB resistance in wheat. The present results suggest the longer latent periods of barley and oat cultivars, than wheat, are likely to play a role in overall FHB resistance if under the same genetic control as PDR components expressed in the head. However the limited range of incubation and latent periods observed within barley and oat cultivars evaluated was in contrast with wheat where incubation and latent periods were shorter and more variable among genotypes. The significance of the various combinations of PDR components detected in the detached leaf assay as components of FHB resistance in each crop requires further investigation, particularly with regard to the apparent tolerance of infection in oats and necrosis in barley, after the incubation period is observed, associated with retardation of mycelial growth and sporulation.
Resumo:
We present a practical scheme for performing ab initio supercell calculations of charged slabs at constant electron chemical potential mu, rather than at constant number of electrons N-e. To this end, we define the chemical potential relative to a plane (or "reference electrode") at a finite distance from the slab (the distance should reflect the particular geometry of the situation being modeled). To avoid a net charge in the supercell, and thus make possible a standard supercell calculation, we restore the electroneutrality of the periodically repeated unit by means of a compensating charge, whose contribution to the total energy and potential is subtracted afterwards. The "constant mu" mode enables one to perform supercell calculation on slabs, where the slab is kept at a fixed potential relative to the reference electrode. We expect this to be useful in modeling many experimental situations, especially in electro-chemistry. (C) 2001 American Institute of Physics.
Resumo:
This paper describes our recent extraction of ancient DNA (aDNA) from Holocene pollen and discusses the potential of the technique for elucidating timescales of evolutionary change. We show that plastid DNA is recoverable and usable from pollen grains of Scots pine Pinus sylvestris from 10 ka and 100 years ago. Comparison of the ancient sequences with modern sequences, obtained from an extant population, establish a first genetic link between modern and fossil samples of Scots pine, providing a genetic continuity through time. One common haplotype is present in each of the three periods investigated, suggesting that it persisted near the lake throughout the postglacial. The retrieval of aDNA from pollen has major implications for palaeoecology by allowing (i) investigation of population level dynamics in time and space, and (ii) tracing ancestry of populations and developing phylogenetic trees that include extinct as well as extant taxa. The method should work over the last glacial oscillation, thus giving access to ancestry of populations over a crucial period of time for the understanding of the relationship between speciation and climate change.
Resumo:
There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.
Resumo:
The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000-566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.