48 resultados para fatty acid methyl ester
Resumo:
The work presented here is aimed at determining the potential and limitations of Raman spectroscopy for fat analysis by carrying out a systematic investigation of C-4-C-24 FAME. These provide a simple, well-characterized set of compounds in which the effect of making incremental changes can be studied over a wide range of chain lengths and degrees of unsaturation. The effect of temperature on the spectra was investigated over much larger ranges than would normally be encountered in real analytical measurements. It was found that for liquid FAME the best internal standard band was the carbonyl stretching vibration nu(C = O), whose position is affected by changes in sample chain length and physical state; in the samples studied here, it was found to lie between 1729 and 1748 cm(-1). Further, molar unsaturation could be correlated with the ratio of the nu(C = O) to either nu(C = C) or delta(H-C = ) with R-2 > 0.995. Chain length was correlated with the delta(CH2)(tw)/nu(C = O) ratio, (where "tw" indicates twisting) but separate plots for odd- and even-numbered carbon chains were necessary to obtain R-2 > 0.99 for liquid samples. Combining the odd- ani even-numbered carbon chain data in a single plot reduced the correlation to R-2 = 0.94-0.96, depending on the band ratios used. For molal unsaturation the band ratio that correlated linearly with unsaturation (R-2 > 0.99) was nu(C = C)/delta(CH2)(SC) (where "sc" indicates scissoring). Other band ratios show much more complex behavior with changes in chemical and physical structure. This complex behavior results from the fact that the bands do not arise from simple vibrations of small, discrete regions of the molecules but are due to complex motions of large sections of the FAME so that making incremental changes in structure does not necessarily lead to simple incremental changes in spectra.
Resumo:
Density functional calculations, using B3LPY/6-31G(d) methods, have been used to investigate the conformations and vibrational (Raman) spectra of three short-chain fatty acid methyl esters (FAMEs) with the formula CnH2nO2 (n = 3-5). In all three FAMEs, the lowest energy conformer has a simple 'all-trans' structure but there are other conformers, with different torsions about the backbone, which lie reasonably close in energy to the global minimum. One result of this is that the solid samples we studied do not appear to consist entirely of the lowest energy conformer. Indeed, to account for the 'extra' bands that were observed in the Raman data but were not predicted for the all-trans conformer, it was necessary to add-in contributions from other conformers before a complete set of vibrational assignments could be made. Provided this was done, the agreement between experimental Raman frequencies and 6-31G(d) values (after scaling) was excellent, RSD = 12.6 cm(-1). However, the agreement between predicted and observed intensities was much less satisfactory. To confirm the validity of the approach followed by the 6-3 1 G(d) basis set, we used a larger basis set, Sadlej pVTZ, and found that these calculations gave accurate Raman intensities and simulated spectra (summed from two different conformers) that were in quantitative agreement with experiment. In addition, the unscaled Sadlej pVTZ, and the scaled 6-3 1 G(d) calculations gave the same vibrational mode assignments for all bands in the experimental data. This work provides the foundation for calculations on longer-chain FAMEs (which are closer to those found as triglycerides in edible fats and oils) because it shows that scaled 6-3 1 G(d) calculations give equally accurate frequency predictions, and the same vibrational mode assignments, as the much more CPU-expensive Sadlej pVTZ basis set calculations.
Resumo:
Disturbed lipid metabolism is a well-established feature of human Alzheimer’s disease (AD). The present study used gas chromatography-mass spectrometry (GC-MS) analysis of fatty acid methyl esters (FAMES) to profile all detectable fatty acid (FA) species present in post-mortem neocortical tissue (Brodmann 7 region). Quantitative targeted analysis was undertaken from 29 subjects (n=15 age-matched controls; n=14 late-stage AD). GC-MS analysis of FAMES detected a total of 24 FAs and of these, 20 were fully quantifiable. The results showed significant and wide ranging elevations in AD brain FA concentrations. A total of 9 FAs were elevated in AD with cis-13,16-docosenoic acid increased most (170%; P=0.033). Intriguingly, docosahexanoic acid (DHA; C22:6) concentrations were elevated (47%; P=0.018) which conflicts with the findings of others (unaltered or decreased) in some brain regions after the onset of AD. Furthermore, our results appear to indicate that subject gender influences brain FA levels in AD subjects (but not in age-matched control subjects). Among AD subjects 7 FA species were significantly higher in males than in females. These preliminary findings pinpoint FA disturbances as potentially important in the pathology of AD. Further work is required to determine if such changes are influenced by disease severity or different types of dementia.
Resumo:
Disturbed lipid metabolism is a well-established feature of human Alzheimer's disease (AD). The present study used gas chromatography-mass spectrometry (GC-MS) analysis of fatty acid methyl esters (FAMES) to profile all detectable fatty acid (FA) species present in post-mortem neocortical tissue (Brodmann 7 region). Quantitative targeted analysis was undertaken from 29 subjects (n=15 age-matched controls; n=14 late-stage AD). GC-MS analysis of FAMES detected a total of 24 FAs and of these, 20 were fully quantifiable. The results showed significant and wide ranging elevations in AD brain FA concentrations. A total of 9 FAs were elevated in AD with cis-13,16-docosenoic acid increased most (170%; P=0.033). Intriguingly, docosahexanoic acid (DHA; C22:6) concentrations were elevated (47%; P=0.018) which conflicts with the findings of others (unaltered or decreased) in some brain regions after the onset of AD. Furthermore, our results appear to indicate that subject gender influences brain FA levels in AD subjects (but not in age-matched control subjects). Among AD subjects 7 FA species were significantly higher in males than in females. These preliminary findings pinpoint FA disturbances as potentially important in the pathology of AD. Further work is required to determine if such changes are influenced by disease severity or different types of dementia.
Resumo:
The effect of increasing concentrations (65, 130, 325, 1,300, and 3,250 μg/g soil dry weight) of 1,2-dichlorobenzene (1,2-DCB) on the microbial biomass, metabolic potential, and diversity of culturable bacteria was investigated using soil microcosms. All doses caused a significant (p < 0.05) decrease in viable hyphal fungal length. Bacteria were more tolerant, only direct total counts in soils exposed to 3,250 μg/g were significantly (p < 0.05) lower than untreated controls, and estimates of culturable bacteria showed no response. Pseudomonads counts were stimulated by 1,2-DCB concentrations of up to 325 μg/g; above this level counts were similar to controls. Fatty acid methyl ester analysis of taxonomic bacterial composition reflected the differential response of specific genera to increasing 1,2-DCB concentrations, especially the tolerance of Bacillus to the highest concentrations. The shifts in community composition were reflected in estimates of metabolic potential assessed by carbon assimilation (Biolog) ability. Significantly fewer (p < 0.05) carbon sources were utilized by communities exposed to 1,2-DCB concentrations greater than 130 μg/g (<64 carbon sources utilized) than control soils (83); the ability to assimilate individual carbohydrates sources was especially compromised. The results of this study demonstrate that community diversity and metabolic potential can be used as effective bioindicators of pollution stress and concentration effects.
Response of soil microbial biomass to 1,2-dichlorobenzene addition in the presence of plant residues
Resumo:
The impact of 1,2-dichlorobenzene on soil microbial biomass in the presence and absence of fresh plant residues (roots) was investigated by assaying total vital bacterial counts, vital fungel hyphal length, total culturable bacterial counts, and culturable fluorescent pseudomonads. Diversity of the fluorescent pseudomonads was investigated using fatty acid methyl ester (FAME) characterization in conjunction with metabolic profiling of the sampled culturable community (Biolog). Mineralization of [14C]1,2- dichlorobenzene was also assayed. Addition of fresh roots stimulated 1,2- dichlorobenzene mineralization by over 100%, with nearly 20% of the label mineralized in root-amended treatments by the termination of the experiment. Presence of roots also buffered any impacts of 1,2-dichlorobenzene on microbial numbers. In the absence of roots, 1,2-dichlorobenzene greatly stimulated total culturable bacteria and culturable pseudomonads in a concentration-dependent manner. 1,2-Dichlorobenzene, up to concentrations of 50 μg/g soil dry weight had little or no deleterious effects on microbial counts. The phenotypic diversity of the fluorescent pseudomonad population was unaffected by the treatments, even though fluorescent pseudomonad numbers were greatly stimulated by both roots and 1,2-dichlorobenzene. The presence of roots had no detectable impact on the bacterial community composition. No phenotypic shifts in the natural population were required to benefit from the presence of roots and 1,2-dichlorobenzene. The metabolic capacity of the culturable bacterial community was altered in the presence of roots but not in the presence of 1,2-dichlorobenzene. It is argued that the increased microbial biomass and shifts in metabolic capacity of the microbial biomass are responsible for enhanced degradation of 1,2-dichlorobenzene in the presence of decaying plant roots.
Resumo:
The effect of 100 μg 1,2-dichlorobenzene (1,2-DCB) g-1 dry weight (dw) of soil introduced either as a single dose or multiple (10 fortnightly) doses of 10 μg g-1 dw, on the microbial biomass, diversity of culturable bacterial community and the rate of 1,2-DCB mineralisation, were compared. After 22 weeks exposure both application regimes significantly reduced total bacterial counts and viable fungal hyphal length. The single dose had the greatest overall inhibitory effect, although the extent of inhibition varied throughout the study. Total culturable bacterial counts, determined after 22 weeks exposure showed little response to 1,2-DCB, but pseudomonad counts in single and multiple treatments were reduced to 9.7 and 0.147%, respectively, of the numbers detected in the control soil. The effect of 1,2-DCB application on the taxonomic composition of the culturable bacteria community was determined by fatty acid methyl ester (FAME) analysis. Compared to control soils, the single dose treatment had a lower percentage of Arthrobacter and Micrococcus. Multiple applications had a significant effect upon pseudomonad abundance, which represented only 2% of the identified community, compared to 45.6% in the control. The multi-dosed soils contained a high percentage of bacilli (> 25%). The effects of 1,2-DCB applications on the metabolic potential of the soil microbial community was determined by BIOLOG profiling. The number of carbon compounds utilised by the community in the multi-dosed soils (49 positives) was significantly less (P < 0.05) than detected in the single dose treatment (76) and control (66). The rate of 1,2-DCB mineralisation, determined by 14CO2 production from radiolabelled [UL-14C] 1,2-DCB, declined throughout the study, and after 22 weeks was slightly but significantly (P < 0.05) lower in the multiply- than the singly-dosed soils. The differential response to 1,2-DCB treatments was attributed to its reduced bioavailability in soils after a single exposure, compared to multiple applications.
Resumo:
opical administration of excess exogenous 5-aminolevulinic acid (ALA) leads to selective accumulation of the potent photosensitiser protoporphyrin IX (PpIX) in neoplastic cells, which can then be destroyed by irradiation with visible light. Due to its hydrophilicity, ALA penetrates deep lesions, such as nodular basal cell carcinomas (BCCs) poorly. As a result, more lipophilic esters of ALA have been employed to improve tissue penetration. In this study, the in vitro release of ALA and M-ALA from proprietary creams and novel patch-based systems across normal stratum corneum and a model membrane designed to mimic the abnormal stratum corneum overlying neoplastic skin lesions were investigated. Receiver compartment drug concentrations were compared with the concentrations of each drug producing high levels of PpIX production and subsequent light-induced kill in a model neoplastic cell line (LOX). LOX cells were found to be quite resistant to ALA- and M-ALA-induced phototoxicity. However, drug concentrations achieved in receiver compartments were comparable to those required to induce high levels of cell death upon irradiation in cell lines reported in the literature. Patches released significantly less drug across normal stratum corneum and significantly more across the model membrane. This is of major significance since the selectivity of PDT for neoplastic lesions will be further enhanced by the delivery system. ALA/M-ALA will only be delivered in significant amounts to the abnormal tissue. PpIX will only then accumulate in the neoplastic cells and the normal surrounding tissue will be unharmed upon irradiation.
Resumo:
The synthesis of a number of new 2,2'-bipyridine ligands, functionalized with bulky ester side groups is reported (L2 - L8). Their reaction with [Ru(DMSO)4Cl2] gives rise to tris-chelate ruthenium(II) metal complexes which show an unusually high proportion of the fac-isomer, as judged by 1H NMR following conversion to the ruthenium(II) complex of 2,2'-bipyridine-5-carboxylic acid methyl ester (L1). The initial reaction appears to have thermodynamic control with the steric bulk of the ligands causing the third ligand to be labile under the reaction conditions used, giving rise to disappointing yields and allowing rearrangement to the more stable facial form. DFT studies indicate that this does not appear to be as a consequence of a metal centered electronic effect. The two isomers of [Ru(L1)3](PF6)2 were separated into the two individual forms using silica preparative plate chromatographic procedures, and the photophysical characteristics of the two forms compared. The results appear to indicate that there is no significant difference in both their room temperature electronic absorption and emission spectra or their excited state lifetimes at 77K.