41 resultados para dendritic cell maturation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DC-LAMP, a member of the lysosomal-associated membrane protein (LAMP) family, is specifically expressed by human dendritic cells (DC) upon activation and therefore serves as marker of human DC maturation. DC-LAMP is detected first in activated human DC within MHC class II molecules-containing compartments just before the translocation of MHC class II-peptide complexes to the cell surface, suggesting a possible involvement in this process. The present study describes the cloning and characterization of mouse DC-LAMP, whose predicted protein sequence is over 50% identical to the human counterpart. The mouse DC-LAMP gene spans over 25 kb and shares syntenic chromosomal localization (16B2-B4 and 3q26) and conserved organization with the human DC-LAMP gene. Analysis of mouse DC-LAMP mRNA and protein revealed the expression in lung peripheral cells, but also its unexpected absence from mouse lymphoid organs and from mouse DC activated either in vitro or in vivo. In conclusion, mouse DC-LAMP is not a marker of mature mouse DC and this observation raises new questions regarding the role of human DC-LAMP in human DC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cybr (also known as Cytip, CASP, and PSCDBP) is an interleukin-12-induced gene expressed exclusively in hematopoietic cells and tissues that associates with Arf guanine nucleotide exchange factors known as cytohesins. Cybr levels are dynamically regulated during T-cell development in the thymus and upon activation of peripheral T cells. In addition, Cybr is induced in activated dendritic cells and has been reported to regulate dendritic cell (DC)-T-cell adhesion. Here we report the generation and characterization of Cybr-deficient mice. Despite the selective expression in hematopoietic cells, there was no intrinsic defect in T- or B-cell development or function in Cybr-deficient mice. The adoptive transfer of Cybr-deficient DCs showed that they migrated efficiently and stimulated proliferation and cytokine production by T cells in vivo. However, competitive stem cell repopulation experiments showed a defect in the abilities of Cybr-deficient T cells to develop in the presence of wild-type precursors. These data suggest that Cybr is not absolutely required for hematopoietic cell development or function, but stem cells lacking Cybr are at a developmental disadvantage compared to wild-type cells. Collectively, these data demonstrate that despite its selective expression in hematopoietic cells, the role of Cybr is limited or largely redundant. Previous in vitro studies using overexpression or short interfering RNA inhibition of the levels of Cybr protein appear to have overestimated its immunological role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemokine eotaxin/CCL11 is an important mediator of leukocyte migration, but its effect on inflammatory cytokine signaling has not been explored. In this study, we find that CCL11 induces suppressor of cytokine signaling (SOCS) 1 and SOCS3 expression in murine macrophages, human monocytes, and dendritic cells (DCs). We also discover that CCL11 inhibits GM-CSF-mediated STAT5 activation and IL-4-induced STAT6 activation in a range of hematopoietic cells. This blockade of cytokine signaling by CCL11 results in reduced differentiation and endocytic ability of DCs, implicating CCL11-induced SOCS as mediators of chemotactic inflammatory control. These findings demonstrate cross-talk between chemokine and cytokine responses, suggesting that myeloid cells tracking to the inflammatory site do not differentiate in the presence of this chemokine, revealing another role for SOCS in inflammatory regulation. J. Leukoc. Biol. 85: 289-297; 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological role of Langerin(+) dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin(+) DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of The biological role of Langerin+ dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin+ DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of Langerin+ DCs in vivo. For the first time, infection experiments with DT-treated Lang-DTR mice revealed that proliferation of L. major-specific CD8+ T cells is significantly reduced during the early phase of the immune response following depletion of Langerin+ DCs. Consequently, the total number of activated CD8+ T cells within the draining lymph node and at the site of infection is diminished. Furthermore, we show that the impaired CD8+ T cell response is due to the absence of Langerin+ dDCs and not Langerhans cells. Nevertheless, the CD4+ T cell response is not altered and the infection is cleared as effectively in DT-treated Lang-DTR mice as in control mice. This clearly demonstrates that Langerin+ DCs are, in general, dispensable for an efficient adaptive immune response against L. major parasites. Thus, we propose a novel concept that, in the experimental model of leishmaniasis, priming of CD4+ T cells is mediated by Langerin− dDCs, whereas Langerin+ dDCs are involved in early priming of CD8+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory T (Treg) cells limit the onset of effective antitumor immunity, through yet-ill-defined mechanisms. We showed the rejection of established ovalbumin (OVA)-expressing MCA101 tumors required both the adoptive transfer of OVA-specific CD8(+) T cell receptor transgenic T cells (OTI) and the neutralization of Foxp3(+) T cells. In tumor-draining lymph nodes, Foxp3(+) T cell neutralization induced a marked arrest in the migration of OTI T cells, increased numbers of dendritic cells (DCs), and enhanced OTI T cell priming. Using an in vitro cytotoxic assay and two-photon live microscopy after adoptive transfer of DCs, we demonstrated that Foxp3(+) T cells induced the death of DCs in tumor-draining lymph nodes, but not in the absence of tumor. DC death correlated with Foxp3(+) T cell-DC contacts, and it was tumor-antigen and perforin dependent. We conclude that Foxp3(+) T cell-dependent DC death in tumor-draining lymph nodes limits the onset of CD8(+) T cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study defines a critical role for Btk in regulating TLR4-induced crosstalk between antigen presenting cells (APCs) and natural killer (NK) cells. Reduced levels of IL-12, IL-18 and IFN-? were observed in Btk-deficient mice and ex vivo generated macrophages and dendritic cells (DCs) following acute LPS administration, whilst enhanced IL-10 production was observed. In addition, upregulation of activation markers and antigen presentation molecules on APCs was also impaired in the absence of Btk. APCs, by virtue of their ability to produce IL-12 and IL-18, are strong inducers of NK-derived IFN-?. Co-culture experiments demonstrate that Btk-deficient DCs were unable to drive wild-type or Btk-deficient NK cells to induce IFN-? production, whereas these responses could be restored by exogenous administration of IL-12 and IL-18. Thus Btk is a critical regulator of APC-induced NK cell activation by virtue of its ability to regulate IL-12 and IL-18 production in response to acute LPS administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage inhibitory cytokine-1 (MIC-1) is a multifunctional cytokine produced in high amounts by placental tissue. Inhibiting trophoblast invasion and suppressing inflammation through inhibition of macrophage activation, MIC-1 is thought to provide pleiotropic functions in the establishment and maintenance of pregnancy. So far, little is known about the decidual cell subsets producing MIC-1 and the effect of this cytokine on dendritic cells (DCs), which are known to play a distinct role in the development of pro-fetal tolerance in pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs. We further showed that Y-Ae, an antibody that is widely used to monitor the formation of complexes involving I-Ab molecules and a peptide derived from the I-E alpha chain, recognizes mature skin DCs that express I-Ab molecules in the absence of I-E alpha. Knowledge of this extra reactivity is important because it could be, and already has been, mistakenly interpreted to support the view that antigen transfer can occur between LCs and DDCs. Collectively, these data revisit the transfer of antigen that occurs between keratinocytes and the five distinguishable skin DC subsets and stress the high degree of functional specialization that exists among them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite compromised T cell antigen receptor (TCR) signaling, mice in which tyrosine 136 of the adaptor linker for activation of T cells (LAT) was constitutively mutated (Lat(Y136F) mice) accumulate CD4(+) T cells that trigger autoimmunity and inflammation. Here we show that equipping postthymic CD4(+) T cells with LATY136F molecules or rendering them deficient in LAT molecules triggers a lymphoproliferative disorder dependent on prior TCR engagement. Therefore, such disorders required neither faulty thymic T cell maturation nor LATY136F molecules. Unexpectedly, in CD4(+) T cells recently deprived of LAT, the proximal triggering module of the TCR induced a spectrum of protein tyrosine phosphorylation that largely overlapped the one observed in the presence of LAT. The fact that such LAT-independent signals result in lymphoproliferative disorders with excessive cytokine production demonstrates that LAT constitutes a key negative regulator of the triggering module and of the LAT-independent branches of the TCR signaling cassette.