29 resultados para coating
Resumo:
A study of the K-alpha radiation emitted from Ti foils irradiated with intense, similar to0.2 J, 67 fs, 800 nm laser pulses, scanning a range of intensities (similar to10(15)-10(18) W cm(-2)), is reported. The brightness of single-shot K-alpha line emission from the front of the targets is recorded. The yield from bare titanium (Ti) is compared to that from plastic (parylene-E) coated Ti. It is demonstrated that, for a defocused beam, a thin layer of plastic increases the yield.
Resumo:
The International Roadmap for Ferroelectric Memories requires three-dimensional integration of high-dielectric materials onto metal interconnects or bottom electrodes by 2010. Here, we demonstrate the possibility of conformally coating carbon nanotubes with high-dielectric oxide as a first step toward ultrahigh integration density of three-dimensional ferroelectric random access memories.
Resumo:
The effect of varying process parameters on atmospheric plasma characteristics and properties of nanometre thick siloxane coatings is investigated in a reel-to-reel deposition process. Varying plasma operation modes were observed with increasing applied power for helium and helium/oxygen plasmas. The electrical and optical behaviour of the dielectric barrier discharge were determined from current/voltage, emission spectroscopy and time resolved light emission measurements. As applied power increased, multiple discharge events occurred, producing a uniform multi-peak pseudoglow discharge, resulting in an increase in the discharge gas temperature. The effects of different operating modes on coating oxidation and growth rates were examined by injecting hexamethyldisiloxane liquid precursor into the chamber under varying operating conditions. A quenching effect on the plasma was observed, causing a decrease in plasma input power and emission intensity. Siloxane coatings deposited in helium plasmas had a higher organic component and higher growth rates than those deposited in helium/oxygen plasmas.
Resumo:
The article highlights new insights into production of thin titania films widely used as catalyst support in many modern reactors including capillary microreactors, microstructured fixed-bed reactors and falling film microreactors. Dip-coating of a Mania sol onto a Si substrate has been studied in the range of the sol viscosities of 1.5-2.5 mPa s and the sol withdrawal rates of 0.2-18 mm/s. Different viscosities of sols were created by addition of desired amounts of nitric acid to the synthesis mixture of titanium isopropoxide and Plutonic F127 in ethanol which allowed to control the rate of the condensation reactions. Uniform inesoporous titania coatings were obtained at the solvent withdrawal rates below 10 mm/s at sol viscosities in the range from 1.6 mPa s to 2.5 mPa s. There exists a limiting withdrawal rate corresponding to a capillary number of ca. 0.01 beyond which uniform titania films cannot be obtained. Below the limiting withdrawal rate, the coating thickness is a power function of the sol viscosity and withdrawal rate, both with an exponent of 2/3. The limiting withdrawal rate increases as the solvent evaporation rate increases and it decreases as the sol viscosity increases. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
An elegant way to prepare catalytically active microreactors is by applying a coating of zeolite crystals onto a metal microchannel structure. In this study the hydrothermal formation of ZSM-5 zeolitic coatings on AISI 316 stainless steel plates with a microchannel structure has been investigated at different synthesis mixture compositions. The procedures of coating and thermal treatment have also been optimized. Obtaining a uniform thickness of the coating within 0.5 mm wide microchannels requires a careful control of various synthesis variables. The role of these factors and the problems in the synthesis of these zeolitic coatings are discussed. In general, the synthesis is most sensitive to the H2O/Si ratio as well as to the orientation of the plates with respect to the gravity vector. Ratios of H2O/Si=130 and Si/template=13 were found to be optimal for the formation of a zeolitic film with a thickness of one crystal at a temperature of 130 degreesC and a synthesis time of about 35 h. At such conditions, ZSM-5 crystals were formed with a typical size of 1.5 mu mx1.5 mu mx1.0 mum and a very narrow (within 0.2 mum) crystal size distribution. The prepared samples proved to be active in the selective catalytic reduction (SCR) of NO with ammonia. The activity tests have been carried out in a plate-type microreactor. The microreactor shows no mass transfer limitations and a larger SCR reaction rate is observed in comparison with pelletized Ce-ZSM-5 catalysts; (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.
Resumo:
Nanomechanical response of a silicon specimen coated with a sp3 crystalline carbon coating (1.8 nm thickness) was investigated using MD simulation. A sharp conical rigid tip was impacted at the speed of 50 m/sec up to a depth of ~80% of the coating thickness. Unlike pure silicon specimen, no metallic phase transformation was observed i.e. a thin coating was able to resist Si-I to Si-II metallic phase transformation signifying that the coating could alter the stress distribution and thereby the contact tribology of the substrate. The stress state of the system, radial distribution function and the load-displacement curve were all aligned with above observations