19 resultados para business process design
Resumo:
The conversion of biomass for the production of liquid fuels can help reduce the greenhouse gas (GHG) emissions that are predominantly generated by the combustion of fossil fuels. Oxymethylene ethers (OMEs) are a series of liquid fuel additives that can be obtained from syngas, which is produced from the gasification of biomass. The blending of OMEs in conventional diesel fuel can reduce soot formation during combustion in a diesel engine. In this research, a process for the production of OMEs from woody biomass has been simulated. The process consists of several unit operations including biomass gasifi- cation, syngas cleanup, methanol production, and conversion of methanol to OMEs. The methodology involved the development of process models, the identification of the key process parameters affecting OME production based on the process model, and the development of an optimal process design for high OME yields. It was found that up to 9.02 tonnes day1 of OME3, OME4, and OME5 (which are suitable as diesel additives) can be produced from 277.3 tonnes day1 of wet woody biomass. Furthermore, an optimal combination of the parameters, which was generated from the developed model, can greatly enhance OME production and thermodynamic efficiency. This model can further be used in a techno- economic assessment of the whole biomass conversion chain to produce OMEs. The results of this study can be helpful for petroleum-based fuel producers and policy makers in determining the most attractive pathways of converting bio-resources into liquid fuels.
Resumo:
Within the ever-changing arenas of architectural design and education, the core element of architectural education remains: that of the design process. The consideration of how to design in addition to what to design presents architectural educators with that most constant and demanding challenge of how do we best teach the design process?
This challenge is arguably most acute at a student's early stages of their architectural education. In their first years in architecture, students will commonly concentrate on the end product rather than the process. This is, in many ways, understandable. A great deal of time, money and effort go into their final presentations. They believe that it is what is on the wall that is going to be assessed. Armed with new computer skills, they want to produce eye-catching graphics that are often no more than a celebration of a CAD package. In an era of increasing speed, immediacy of information and powerful advertising it is unsurprising that students want to race quickly to presenting an end-product.
Recognising that trend, new teaching methods and models were introduced into the second year undergraduate studio over the past two years at Queen's University Belfast, aimed at promoting student self-reflection and making the design process more relevant to the students. This paper will first generate a critical discussion on the difficulties associated with the design process before outlining some of the methods employed to help promote the following; an understanding of concept, personalisation of the design process for the individual student; adding realism and value to the design process and finally, getting he students to play to their strengths in illustrating their design process like an element of product. Frameworks, examples, outcomes and student feedback will all be presented to help illustrate the effectiveness of the new strategies employed in making the design process firstly, more relevant and therefore secondly, of greater value, to the architecture student.
Resumo:
Traditional business models in the aerospace industry are based on a conventional supplier to customer relationship based on the design, manufacture and subsequent delivery of the physical product. Service provision, from the manufacturer's perspective, is typically limited to the supply of procedural documentation and the provision of spare parts to the end user as the product passes through the latter stages of its intended lifecycle. Challenging economic and political conditions have resulted in end users re-structuring their core business activities, particularly in the defence sector. This has resulted in the need for original equipment manufacturers (OEMs) to integrate and manage support service activities in partnership with the customer to deliver platform availability. This improves the probability of commercial sustainability for the OEM through shared operational risks while reducing the cost of platform ownership for the customer. The need for OEMs to evolve their design, manufacture and supply strategies by focusing on customer requirements has revealed a need for reconstruction of traditional internal behaviours and design methodologies. Application of organisational learning is now a well recognised principle for innovative companies to achieve long term growth and sustained technical development, and hence, greater market command. It focuses on the process by which the organisation's knowledge and value base changes, leading to improved problem solving ability and capacity for action. From the perspective of availability contracting, knowledge and the processes by which it is generated, used and retained, become primary assets within the learning organisation. This paper will introduce the application of digital methods to asset management by demonstrating how the process of learning can benefit from a digital approach, how product and process design can be integrated within a virtual framework and finally how the approach can be applied in a service context.
Resumo:
This paper examines the applicability of a digital manufacturing framework to the implementation of a Value Driven Design (VDD) approach for the development of a stiffened composite panel. It presents a means by which environmental considerations can be integrated with conventional product and process design drivers within a customized, digital environment. A composite forming process is used as an exemplar for the work which creates a collaborative environment for the integration of more traditional design drivers with parameters related to manufacturability as well as more sustainable processes and products. The environmental stakeholder is introduced to the VDD process through a customized product/process/resource (PPR) environment where application specific power consumption and material waste data has been measured and characterised in the process design interface. This allows the manufacturing planner to consider power consumption as a concurrent design driver and the inclusion of energy as a parameter in a VDD approach to the development of efficiently manufactured, sustainable transport systems.
Resumo:
Composite Applications on top of SAPs implementation of SOA (Enterprise SOA) enable the extension of already existing business logic. In this paper we show, based on a case study, how Model-Driven Engineering concepts are applied in the development of such Composite Applications. Our Case Study extends a back-end business process which is required for the specific needs of a demo company selling wine. We use this to describe how the business centric models specifying the modified business behaviour of our case study can be utilized for business performance analysis where most of the actions are performed by humans. In particular, we apply a refined version of Model-Driven Performance Engineering that we proposed in our previous work and motivate which business domain specifics have to be taken into account for business performance analysis. We additionally motivate the need for performance related decision support for domain experts, who generally lack performance related skills. Such a support should offer visual guidance about what should be changed in the design and resource mapping to get improved results with respect to modification constraints and performance objectives, or objectives for time.
Resumo:
Composite Applications on top of SAPs implementation of SOA (Enterprise SOA) enable the extension of already existing business logic. In this paper we show, based on a case study, how Model-Driven Engineering concepts are applied in the development of such Composite Applications. Our Case Study extends a back-end business process which is required for the specific needs of a demo company selling wine. We use this to describe how the business centric models specifying the modified business behaviour of our case study can be utilized for business performance analysis where most of the actions are performed by humans. In particular, we apply a refined version of Model-Driven Performance Engineering that we proposed in our previous work and motivate which business domain specifics have to be taken into account for business performance analysis. We additionally motivate the need for performance related decision support for domain experts, who generally lack performance related skills. Such a support should offer visual guidance about what should be changed in the design and resource mapping to get improved results with respect to modification constraints and performance objectives, or objectives for time.
Resumo:
This paper presents an automated design framework for the development of individual part forming tools for a composite stiffener. The framework uses parametrically developed design geometries for both the part and its layup tool. The framework has been developed with a functioning user interface where part / tool combinations are passed to a virtual environment for utility based assessment of their features and assemblability characteristics. The work demonstrates clear benefits in process design methods with conventional design timelines reduced from hours and days to minutes and seconds. The methods developed here were able to produce a digital mock up of a component with its associated layup tool in less than 3 minutes. The virtual environment presenting the design to the designer for interactive assembly planning was generated in 20 seconds. Challenges still exist in determining the level of reality required to provide an effective learning environment in the virtual world. Full representation of physical phenomena such as gravity, part clashes and the representation of standard build functions require further work to represent real physical phenomena more accurately.
Resumo:
Ionic liquids (ILs) have attracted large amount of interest due to their unique properties. Although large effort has been focused on the investigation of their potential application, characterization of ILs properties and structure–property relationships of ILs are poorly understood. Computer aided molecular design (CAMD) of ionic liquids (ILs) can only be carried if predictive computational methods for the ILs properties are available. The limited availability of experimental data and their quality have been preventing the development of such tools. Based on experimental surface tension data collected from the literature and measured at our laboratory, it is here shown how a quantitative structure–property relationship (QSPR) correlation for parachors can be used along with an estimation method for the densities to predict the surface tensions of ILs. It is shown that a good agreement with literature data is obtained. For circa 40 ionic liquids studied a mean percent deviation (MPD) of 5.75% with a maximum deviation inferior to 16% was observed. A correlation of the surface tensions with the molecular volumes of the ILs was developed for estimation of the surface tensions at room temperature. It is shown that it can describe the experimental data available within a 4.5% deviation. The correlations here developed can thus be used to evaluate the surface tension of ILs for use in process design or in the CAMD of new ionic liquids.
Resumo:
What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools process optimizations or a combination Of Such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.
Resumo:
The primary goal of this work is to quantify any bene?ts that the use of digital manufacturing methods can offer when used upstream from production, for manufacturing process design, and tool development. Learning at this stage of product development is referred to as management learning. Animated build simulations have been used to develop build procedures and tooling for a panel assembly for the new Bombardier CRJ1000 (Canadair Regional Jet, 100 seat). When the jig format was developed, its simulated performance was compared to that of current CRJ700/900 panel builds to identify and quantify any improvements in terms of tooling cost and panel build time. When comparing like-for-like functions between existing CRJ700/900 (Canadair Regional Jet, 70/90 seat) and the
CRJ1000 tooling, it was predicted that the digitally assisted improvements had brought about a 4.9% reduction in jig cost. An evaluation of the build process for the CRJ1000 uplock panel predicted a 5.2% reduction in the assembly time. In addition to the improvement of existing tooling functions, new jig functionality was added so that both the drilling and riveting functions could be carried out in a single jig for the new RJ1000 panel.