20 resultados para bk: Tanganyika
Resumo:
Microlaminated sediment cores from the Kalya slope region of Lake Tanganyika provide a near-annually resolved paleoclimate record between similar to 2,840 and 1,420 cal. yr B.P. demonstrating strong linkages between climate variability and lacustrine productivity. Laminae couplets comprise dark, terrigenous-dominated half couplets, interpreted as low density underflows deposited from riverine sources during the rainy season, alternating with light, planktonic diatomaceous ooze, with little terrigenous component, interpreted as windy/dry season deposits. Laminated portions of the studied cores consist of conspicuous dark and light colored bundles of laminae couplets. Light and dark bundles alternate at decadal time scales. Within dark bundles, both light and dark half couplets are significantly thinner than within light bundles, implying slower sediment accumulation rates during both seasons over those intervals.
Resumo:
The perforated-patch technique was used to measure membrane currents in smooth muscle cells from sheep urethra. Depolarizing pulses evoked large transient outward currents and several components of sustained current. The transient current and a component of sustained current were blocked by iberiotoxin, penitrem A, and nifedipine but were unaffected by apamin or 4-aminopyridine, suggesting that they were mediated by large-conductance Ca(2+)-activated K(+) (BK) channels. When the BK current was blocked by exposure to penitrem A (100 nM) and Ca(2+)-free bath solution, there remained a voltage-sensitive K(+) current that was moderately sensitive to blockade with tetraethylammonium (TEA; half-maximal effective dose = 3.0 +/- 0.8 mM) but not 4-aminopyridine. Penitrem A (100 nM) increased the spike amplitude and plateau potential in slow waves evoked in single cells, whereas addition of TEA (10 mM) further increased the plateau potential and duration. In conclusion, both Ca(2+)-activated and voltage-dependent K(+) currents were found in urethral myocytes. Both of these currents are capable of contributing to the slow wave in these cells, suggesting that they are likely to influence urethral tone under certain conditions.
Resumo:
Whole-cell and inside-out patch-clamp techniques were used to assess the action of a well-known dye, Evans blue, on membrane currents in bladder isolated smooth muscle cells from sheep. In whole cells Evans blue dose-dependently increased the outward current by up to fivefold. In contrast, Evans blue had no effect on inward Ca2+ current. The effect on outward current was abolished or reduced if the cells were bathed in Ca2+-free solution, iberiotoxin (5 x 10(-8) M), or charybdotoxin (5 x 10(-8) M), but was unaffected by externally applied caffeine (5 mM) or in cells exposed to heparin (1 mg/ml) via the patch pipette. In inside-out patches bathed in a Ca2+ concentration of 5 x 10(-7) M, Evans blue (10(-4) M) increased the open probability of large-conductance (298-pS) Ca2+-dependent K+ channels (BK channels), shifting the half maximal-activation voltage by -70 mV. We conclude that Evans blue dye acts as an opener of BK channels.
Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?
Resumo:
Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Moller K. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol 297: R1283-R1292, 2009. First published September 2, 2009; doi: 10.1152/ajpregu.00366.2009.-This study examined whether hypoxia causes free radical-mediated disruption of the blood-brain barrier (BBB) and impaired cerebral oxidative metabolism and whether this has any bearing on neurological symptoms ascribed to acute mountain sickness (AMS). Ten men provided internal jugular vein and radial artery blood samples during normoxia and 9-h passive exposure to hypoxia (12.9% O-2). Cerebral blood flow was determined by the Kety-Schmidt technique with net exchange calculated by the Fick principle. AMS and headache were determined with clinically validated questionnaires. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites. Neuron-specific enolase (NSE), S100 beta, and 3-nitrotyrosine (3-NT) were determined by ELISA. Hypoxia increased the arterio-jugular venous concentration difference (a-v(D)) and net cerebral output of lipid-derived alkoxyl-alkyl free radicals and lipid hydroperoxides (P
Resumo:
Background and purpose: Obestatin is a recently-discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. Experimental approach: Cumulative relaxation responses to obestatin peptides were assessed in isolated rat aorta and mesenteric artery (n=8) in the presence/absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). Key results: Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, L-NAME (NO synthase inhibitor), high extracellular K(+) , GDP-ß-S (G protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked G protein-coupled receptor, PI3K/Akt, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and Akt phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarising factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. Conclusions and Implications: Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterised by endothelial dysfunction and cardiovascular complications.
Resumo:
PURPOSE: To investigate the role of feedback by Ca²?-sensitive plasma-membrane ion channels in endothelin 1 (Et1) signaling in vitro and in vivo. Methods. Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using two-dimensional (2-D) confocal laser microscopy. Vasoconstrictor responses to intravitreal injections of Et1 were recorded in the absence and presence of appropriate ion channel blockers using fluorescein angiograms imaged using a confocal scanning laser ophthalmoscope. Results. Et1 (10 nM) increased both basal [Ca²?](i) and the amplitude and frequency of Ca²?-waves in retinal arterioles. The Ca²?-activated Cl?-channel blockers DIDS and 9-anthracene carboxylic acid (9AC) blocked Et1-induced increases in wave frequency, and 9AC also inhibited the increase in amplitude. Iberiotoxin, an inhibitor of large conductance (BK) Ca²?-activated K?-channels, increased wave amplitude in the presence of Et1 but had no effect on frequency. None of these drugs affected basal [Ca²?](i). The voltage-operated Ca²?-channel inhibitor nimodipine inhibited wave frequency and amplitude and also lowered basal [Ca²?](i) in the presence of Et1. Intravitreal injection of Et1 caused retinal arteriolar vasoconstriction. This was inhibited by DIDS but not by iberiotoxin or penitrem A, another BK-channel inhibitor. Conclusions. Et1 evokes increases in the frequency of arteriolar Ca²?-waves in vitro, resulting in vasoconstriction in vivo. These responses, initiated by release of stored Ca²?, also require positive feedback via Ca²?-activated Cl?-channels and L-type Ca²?-channels.
Resumo:
An indirect immunocytochemical technique combined with confocal scanning laser microscopy has been used to demonstrate immunoreactivities to the nonapeptide, RPPGFSPFR (bradykinin, BK) and the endogenous flatworm regulatory peptide, GYIRFamide in the nervous system of the monogenean, Diclidophora merlangi. In addition, a simultaneous double-labelling technique was employed to examine possible co-localization of GYIRFamide- and neuropeptide F (NPF) immunoreactivities, using antisera to the C-terminal nonapeptide-amide of NPF (Moniezia expansa, FAIIGRPRF.NH2). BK immunostaining was restricted to a small population of nerve cells and associated fibres within the Ventral nerve cords and to 2 pairs of nerve cells innervating the cirrus and the pharynx, respectively. No immunopositive nerve cells and fibres were identified within the brain or in association with the female reproductive apparatus. In contrast, GYIRFamide staining was abundant throughout the central and peripheral nervous systems, and appeared similar to the staining pattern revealed using an FMRFamide antiserum. GYIRFamide immunoreactivity was localized to nerve cells and fibres within the paired cerebral ganglia and the longitudinal ventral, dorsal and lateral nerve cords and their numerous interconnecting transverse commissures. The plexuses of the buccal suckers, pharynx and clamps of the haptor were strongly immunopositive for GYIRFamide, as were nerve cells innervating the ootype, the oviduct and the vitelline reservoir of the reproductive apparatus. Double-labelling experiments indicated an apparent co-localization of GYIRFamide and NPF immunoreactivities.
Resumo:
Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.
Resumo:
The Waxy Monkey Leaf Frog, Phyllomedusa sauvagei, has been extensively-studied for many years, and a broad spectrum of bioactive peptides has been found in its skin secretions. Here we report the discovery of a novel tryptophyllin (TPH) peptide, named PsT-1, from this frog species. Skin secretions from specimens of P. sauvagei were collected by mild electrical stimulation. Peptides were identified and characterized by transcriptome cloning, and the structure was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This novel peptide was encoded by a single precursor of 61 amino acid residues, whose primary structure was deduced from cloned skin cDNA. Analysis of different amphibian tryptophyllins revealed that PsT-1 exhibited a high degree of primary structural similarity to its homologues, PdT-1 and PdT-2, from the Mexican giant leaf frog, Pachymedusa dacnicolor. A synthetic replicate of PsT-1 was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle. It was also found that PsT-1 had an anti-proliferative effect on three different human prostate cancer cell lines (LNCaP/PC3/DU145), by use of an MTT assay coupled with direct cell counting as measures of cell growth. These data indicate that PsT-1 is a likely bradykinin receptor antagonist and its biological effects are probably mediated through bradykinin receptors. As a BK antagonist, PST-1, with antagonistic effects on BK in artery smooth muscle, inhibition of proliferation in prostate cancer cells and lack of undesirable side effects, may have potential in cardiovascular, inflammatory and anticancer therapy.
Resumo:
Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility.
Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors.
Key Results: KCNQ subtypes 1-5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20M) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity.
Conclusions and Implications: These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.
Resumo:
Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LIADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LIADF1 by similar to60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy.
Resumo:
Purpose: This study tested the role of K(+)- and Cl(-)-channels in retinal arteriolar smooth muscle in the regulation of retinal blood flow.
Methods: Studies were carried out in adult Male Hooded Lister rats. Selectivity of ion channel blockers was established using electrophysiological recordings from smooth muscle in isolated arterioles under voltage clamp conditions. Leukocyte velocity and retinal arteriolar diameters were measured in anesthetised animals using leukocyte fluorography and fluorescein angiography imaging with a confocal scanning laser ophthalmoscope. These values were used to estimate volumetric flow, which was compared between control conditions and following intravitreal injections of ion channel blockers, either alone or in combination with the vasoconstrictor potent Endothelin 1 (Et1).
Results: Voltage activated K(+)-current (IKv) was inhibited by correolide, large conductance (BK) Ca(2+)-activated K(+)-current (IKCa) by Penitrem A, and Ca(2+)-activated Cl(-)-current (IClCa) by disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). Intravitreal injections (10µl) of DIDS (estimated intraocular concentration 10mM) increased flow by 22%, whereas the BK-blockers Penitrem A (1µM) and iberiotoxin (4µM), and the IKv-inhibitor correolide (40µM) all decreased resting flow by approximately 10%. Et1 (104nM) reduced flow by almost 65%. This effect was completely reversed by DIDS but was unaffected by Penitrem A, iberiotoxin or correolide.
Conclusions: These results suggest that Cl(-)-channels in retinal arteriolar smooth muscle limit resting blood flow and play an obligatory role in Et1 responses. K(+)-channel activity promotes basal flow but exerts little modifying effect on the Et1 response. Cl(-)-channels may be appropriate molecular targets in retinal pathologies characterised by increased Et1 activity and reduced blood flow.
Resumo:
Purpose: To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Methods: Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacological agents inhibiting Ca2+ sparks and oscillations and K+ channels. Subcellular Ca2+ signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Results: AA dilated pressurised retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. AA-induced dilation was associated with an inhibition of subcellular Ca2+ signals. Interventions known to block Ca2+ sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. AA accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous BK currents, but only at positive membrane potentials. Pharmacological inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. AA suppressed L-type Ca2+ currents. Conclusions: These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca2+ signalling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca2+ channel activity. AA actions on K+ currents are inconsistent with a model in which K+ channels contribute to the vasodilator effects of AA.
Resumo:
Bradykinin-related peptides (BRPs) are significant components of the defensive skin secretions of many anuran amphibians, and these secretions represent the source of the most diverse spectrum of such peptides so far encountered in nature. Of the many families of bioactive peptides that have been identified from this source, the BRPs uniquely appear to represent homologues of counterparts that have specific distributions and receptor targets within discrete vertebrate taxa, ranging from fishes through mammals. Their broad spectra of actions, including pain and inflammation induction and smooth muscle effects, make these peptides ideal weapons in predator deterrence. Here, we describe a novel 12-mer BRP (RVALPPGFTPLR-RVAL-(L1, T6, L8)-bradykinin) from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). The C-terminal 9 residues of this BRP (-LPPGFTPLR) exhibit three amino acid substitutions (L/R at Position 1, T/S at Position 6 and L/F at Position 8) when compared to canonical mammalian bradykinin (BK), but are identical to the kinin sequence present within the cloned kininogen-2 from the Chinese soft-shelled turtle (Pelodiscus sinensis) and differ from that encoded by kininogen-2 of the Tibetan ground tit (Pseudopodoces humilis) at just a single site (F/L at Position 8). These data would imply that the novel BRP is an amphibian defensive agent against predation by sympatric turtles and also that the primary structure of the avian BK, ornithokinin (RPPGFTPLR), is not invariant within this taxon. Synthetic RVAL-(L1, T6, L8)-bradykinin was found to be an antagonist of BK-induced rat tail artery smooth muscle relaxation acting via the B2-receptor.
Resumo:
The radiative decay of surface plasmon polaritons has been investigated in an attempt to characterize the surface roughness of Ag films prepared under different conditions. The polaritons were excited by the method of attenuated total reflection of light. The films were deposited on the face of a 60-degrees BK-7 glass prism at a rate that was deliberately fixed in two different ranges (centred on 0.1 and 10 nm s-1) and in some cases a CaF2 underlayer was used to roughen the film surfaces. The intensity of the scattered light emitted from the opposite face of the films was measured as a function of direction for each using the same sensitivity scale and was correlated with the preparation of the film. It was found that on nominally smooth substrates fast-deposited thinner films give out more light and are deduced to have greater short wavelength (300-600 nm) roughness amplitude. There is also evidence for long wavelenth (7 mum) periodic roughness due to the prism substrate itself. On CaF2 roughened surfaces the light output from the films is further increased and the peak intensity is backward directed with respect to the exciting laser beam direction. Here roughness on a lateral scale of 350 nm is responsible. Also, elastic scattering of surface plasmon polaritons at grain boundaries reduces the light output from fast deposited, small grain, films on CaF2 roughened surfaces. Overall, a consistent picture of roughness induced radiative polariton decay emerges for all cases studied.