30 resultados para binding free enthalpy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a self-consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non-spin-polarized reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to a fixed moment model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe, which we compare with results using the local spin density approximation. The fixed moment model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach, we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The free fatty acid receptors (FFAs), including FFA1 (orphan name: GPR40), FFA2 (GPR43) and FFA3 (GPR41) are G protein-coupled receptors (GPCRs) involved in energy and metabolic homeostasis. Understanding the structural basis of ligand binding at FFAs is an essential step toward designing potent and selective small molecule modulators.

RESULTS: We analyse earlier homology models of FFAs in light of the newly published FFA1 crystal structure co-crystallized with TAK-875, an ago-allosteric ligand, focusing on the architecture of the extracellular binding cavity and agonist-receptor interactions. The previous low-resolution homology models of FFAs were helpful in highlighting the location of the ligand binding site and the key residues for ligand anchoring. However, homology models were not accurate in establishing the nature of all ligand-receptor contacts and the precise ligand-binding mode. From analysis of structural models and mutagenesis, it appears that the position of helices 3, 4 and 5 is crucial in ligand docking. The FFA1-based homology models of FFA2 and FFA3 were constructed and used to compare the FFA subtypes. From docking studies we propose an alternative binding mode for orthosteric agonists at FFA1 and FFA2, involving the interhelical space between helices 4 and 5. This binding mode can explain mutagenesis results for residues at positions 4.56 and 5.42. The novel FFAs structural models highlight higher aromaticity of the FFA2 binding cavity and higher hydrophilicity of the FFA3 binding cavity. The role of the residues at the second extracellular loop used in mutagenesis is reanalysed. The third positively-charged residue in the binding cavity of FFAs, located in helix 2, is identified and predicted to coordinate allosteric modulators.

CONCLUSIONS: The novel structural models of FFAs provide information on specific modes of ligand binding at FFA subtypes and new suggestions for mutagenesis and ligand modification, guiding the development of novel orthosteric and allosteric chemical probes to validate the importance of FFAs in metabolic and inflammatory conditions. Using our FFA homology modelling experience, a strategy to model a GPCR, which is phylogenetically distant from GPCRs with the available crystal structures, is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macro domains constitute a protein module family found associated with specific histones and proteins involved in chromatin metabolism. In addition, a small number of animal RNA viruses, such as corona- and toroviruses, alphaviruses, and hepatitis E virus, encode macro domains for which, however, structural and functional information is extremely limited. Here, we characterized the macro domains from hepatitis E virus, Semliki Forest virus, and severe acute respiratory syndrome coronavirus (SARS-CoV). The crystal structure of the SARS-CoV macro domain was determined at 1.8-Å resolution in complex with ADP-ribose. Information derived from structural, mutational, and sequence analyses suggests a close phylogenetic and, most probably, functional relationship between viral and cellular macro domain homologs. The data revealed that viral macro domains have relatively poor ADP-ribose 1"-phosphohydrolase activities (which were previously proposed to be their biologically relevant function) but bind efficiently free and poly(ADP-ribose) polymerase 1-bound poly(ADP-ribose) in vitro. Collectively, these results suggest to further evaluate the role of viral macro domains in host response to viral infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-electron QED contributions to the ground-state binding energy of Kr34+ ions have been determined in two independent experiments performed with electron beam ion traps (EBIT) in Heidelberg (HD) and Tokyo (BT, Belfast-Tokyo collaboration). X rays arising from radiative recombination (RR) of free electrons to the ground state of initially bare Kr36+ and hydrogenlike Kr35+ ions were observed as a function of the interacting electron energy. The K edge absorption by thin Eu and W foils provided fixed photon energy references used to measure the difference in binding energy Delta E-2e between the H- and He-like Kr ions (Kr35+ and Kr34+, respectively). The two values agree well, yielding a final result of Delta E-2e=641.8 +/- 1.7 eV, confirming recent results of rigorous QED calculations. This accuracy is just of the order required to access screened radiative QED contributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G-protein-coupled receptor free fatty acid receptor 1 (FFAR1), previously named GPR40, is a possible novel target for the treatment of type 2 diabetes. In an attempt to identify new ligands for this receptor, we performed virtual screening (VS) based on two-dimensional (2D) similarity, three-dimensional (3D) pharmacophore searches, and docking studies by using the structure of known agonists and our model of the ligand binding site, which was validated by mutagenesis. VS of a database of 2.6 million compounds followed by extraction of structural neighbors of functionally confirmed hits resulted in identification of 15 compounds active at FFAR1 either as full agonists, partial agonists, or pure antagonists. Site-directed mutagenesis and docking studies revealed different patterns of ligand-receptor interactions and provided important information on the role of specific amino acids in binding and activation of FFAR1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting long-term outcome after breast-cancer diagnosis remains problematic, particularly for patients with clinically small, axillary lymph node- negative tumours, Evidence suggests that the lectin Helix pomatia agglutinin (HPA) identifies oligosaccharides associated with poor-prognosis cancer. Our aim was to identify oligosaccharides that bind HPA in aggressive breast cancers. Breast-cancer cell lines (MCF-7, BT-549 and BT-20) and a cell line From human milk (HBL-100), which showed a range of HPA-binding intensities, were used to extract HPA-binding glycoproteins, Oligosaccharides were released using anhydrous hydrazine and separated on a range of HPLC matrices. We investigated whether HPA-binding oligosaccharides from cell lines were present in human breast-cancer tissues, using 69 breast-cancer specimens from patients with between 5 and 10 years' follow-up. A monosialylated oligosaccharide was over-expressed in the cell line that bound HPA strongly. Further analysis by normal-phase HPLC showed that the 2-aminobenzamide-conjugated oligosaccharide had a hydrodynamic volume of 4.58 glucose units (HPAgly 1), Increased expression of HPAgly 1 was associated with HPA staining of breast-cancer specimens (Student's t-test p = 0.025). Analysis of oligosaccharide levels and disease-free survival after treatment for breast cancer indicated a shorter disease-free interval for patients with elevated levels of HPAgly 1, This is the first time that histochemical lectin staining has been correlated with biochemical mapping of oligosaccharides, Using this approach, we have identified a monosialylated HPA lectin-binding oligosaccharide present in breast-cancer cells grown in vitro which is elevated in breast-cancer specimens that bind the lectin, (C) 2001 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA sequences attached to Au nanoparticles via thiol linkers stand up from the surface, giving preferential enhancement of the adenine ring breathing SERS band. Non-specific binding via the nucleobases reorients the DNA, reducing this effect. This change in intensity on reorientation was utilised for label-free detection of hybridization of a molecular beacon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-alpha-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu(173) or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [S-35] guanosine 5'-(3-O-thio) triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized alpha-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized alpha-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency, such that acetate (C2) has been described as FFA2 selective while propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations marked variation in ligand-independent, constitutive activity was identified. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity while the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the 2nd extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity, and in most cases also yielded corresponding changes in SCFA potency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict paclitaxel responses in women presenting with high-grade serous EOC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FFA2 is a G protein-coupled receptor that responds to short chain fatty acids (SCFAs) and has generated interest as a therapeutic target for metabolic and inflammatory conditions. However, definition of its functions has been slowed by a dearth of selective ligands that can distinguish it from the closely related FFA3. At present, the only selective ligands described for FFA2 suffer from either poor potency, altered signaling due to allosteric modes of action, or a lack of function at non-human orthologs of the receptor. To address the need for novel selective ligands, we synthesized two compounds potentially having FFA2 activity and examined the molecular basis of their function. These compounds were confirmed to be potent and selective FFA2 agonists that interact with the orthosteric binding site. A combination of ligand structure-activity relationship, pharmacological analysis, homology modeling, species ortholog comparisons and mutagenesis studies were then employed to define the molecular basis of selectivity and function of these ligands. From this, we identified key residues within both extracellular loop 2 (ECL2) and the transmembrane domain (TM) regions of FFA2 critical for ligand function. One of these ligands was active with reasonable potency at rodent orthologs of FFA2 and demonstrated the role of FFA2 in the regulation of lipolysis in murine 3T3-L1 adipocytes. Together, these findings describe the first potent and selective FFA2 orthosteric agonists and demonstrate key aspects of ligand interaction within the orthosteric binding site of FFA2 that will be invaluable in future ligand development at this receptor.