120 resultados para band bowing coefficient
Resumo:
A new inline coupling topology for narrowband helical resonator filters is proposed that allows to introduce selectively located transmission zeros (TZs) in the stopband. We show that a pair of helical resonators arranged in an interdigital configuration can realize a large range of in-band coupling coefficient values and also selectively position a TZ in the stopband. The proposed technique dispenses the need for auxiliary elements, so that the size, complexity, power handling and insertion loss of the filter are not compromised. A second order prototype filter with dimensions of the order of 0.05 lambda, power handling capability up to 90 W, measured insertion loss of 0.18 dB and improved selectivity is presented.
Resumo:
The problem of diffraction of an optical wave by a 2D periodic metal aperture array with square, circular, and ring apertures is solved with allowance for the finite permittivity of a metal in the optical band. The correctness of the obtained results is verified through comparison with experimental data. It is shown that the transmission coefficient can be substantially greater than the corresponding value reached in the case of diffraction by a grating in a perfectly conducting screen.
Resumo:
A novel dual-band printed diversity antenna is proposed and studied. The antenna, which consists of two back-to- back monopoles with symmetric configuration, is printed on a printed circuit board. The effects of some important parameters of the proposed antenna are deeply studied and the design methodology is given. A prototype of the proposed antenna operating at UMTS (1920-2170 MHz) and 2.4-GHz WLAN (2400-2484 MHz) bands is provided to demonstrate the usability of the methodology in dual-band diversity antenna for mobile terminals. In the above two bands, the isolations of the prototype are larger than 13 dB and 16 dB, respectively. The measured radiation patterns of the two monopoles in general cover complementary space regions. The diversity performance is also evaluated by calculating the envelope correlation coefficient, the mean effective gains of the antenna elements and the diversity gain. It is proved that the proposed antenna can provide spatial and pattern diversity to combat multipath fading.
Resumo:
In this paper, we show that a multilayer freestanding slot array can be designed to give an insertion loss which is significantly lower than the value obtainable from a conventional dielectric backed printed frequency selective surface (FSS). This increase in filter efficiency is highlighted by comparing the performance of two structures designed to provide frequency selective beamsplitting in the quasioptical feed train of a submillimeter wave space borne radiometer. A two layer substrateless FSS providing more than 20 dB of isolation between the bands 316.5â??325.5 GHz and 349.5â??358.5 GHz, gives an insertion loss of 0.6 dB when the filter is orientated at 45 incidence in the TM plane, whereas the loss exhibited by a conventional printed FSS is in excess of 2 dB. A similar frequency response can be obtained in the TE plane, but here a triple screen structure is required and the conductor loss is shown to be comparable to the absorption loss of a dielectric backed FSS. Experimental devices have been fabricated using a precision micromachining technique. Transmission measurements performed in the range 250â??360 GHz are in good agreement with the simulated spectral performance of the individual periodic screens and the two multilayer freestanding FSS structures.
Resumo:
A semi-phenomenological model describing wideband dielectric and far-infrared spectra of liquid water was proposed recently by the same authors [J. Mol. Struct. 606 (2002) 9], where a small dipole-moment component changing harmonically with time determines a weak absorption band (termed here the R-band) centred at the wavenumber v similar to 200 cm(-1). In the present work, a rough molecular theory of the R-band based on the concept of elastic interactions is given. Stretching and bending of hydrogen bonds cause restricted rotation (RR) of a polar water molecule in terms of a dimer comprising the H- bonded molecules. Analytical expression for the RR frequency nu(str) is derived as a function of the RR amplitude, geometrical parameters and force constants. The density g(nu(str)) of frequency distribution is shown to be centred in the R-band. The spectrum of the dipolar auto-correlation function calculated for this structural-dynamical model is found. A composite model comprising two intermolecular potentials is proposed, which yields for water a good description of the experimental wideband (from 0 to 1000 cm(- 1)) spectra of complex permittivity and of absorption coefficient. The presented interpretation of these spectra is based on a concept that water presents a two-component solution, with components differing by the types of molecular rotation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A simple molecular analytical theory of dielectric relaxation in strongly polar fluids is considered in terms of a semi- phenomenological approach. Theoretical spectra epsilon(v), a(v) of complex permittivity and absorption coefficient are fully determined by a form of intermolecular potential well, in which a dipole reorients. In a recent publication by VI. Gaiduk, O.F. Nielsen, and T.S. Perova [J. Molliq 95 (1002) 1-25] the wideband spectra of liquid H2O and D2O were described in terms of a composite model comprising the rectangular and the cosine squared potential wells. Much better results are achieved in this work, where the rectangular well is replaced by a well with a rounded bottom termed the hat-curved well. The spectrum of the auto-correlation function (ACF) is calculated for such a potential. The proposed theory of a composite model, comprising hat-curved and parabolic wells, is applied for liquid water. This model is capable for describing the Debye relaxation region, the second relaxation region in the submillimeter wavelength range, and the far infra-red (FIR) e(v), a(v) spectra, where an intense librational band and an additional weak band are placed, respectively, near 700 cm(-1) and 200 cm(-1). The latter band reflects the features of so-called specific (viz. directly related to H-bonds) interactions and the former band reflects the features of unspecific interactions. The physical mechanisms connected with these types of interactions are discussed in terms of two relevant types of water structure (types of molecular rotation). The proposed theory is also applied to a non-associated liquid in terms of one hat-curved potential well. (C) 2004 Elsevier B.V. All rights reserved.
Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma
Resumo:
Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.
Resumo:
Three-dimensional photonic crystals based on macroporous silicon are fabricated by photoelectrochemical etching and subsequent focused-ion-beam drilling. Reflection measurements show a high reflection in the range of the stopgap and indicate the spectral position of the complete photonic band gap. The onset of diffraction which might influence the measurement is discussed.