42 resultados para approximately homogenous C* algebras
Resumo:
A new C*-enlargement of a C*-algebra A nested between the local multiplier algebra of A and its injective envelope is introduced. Various aspects of this maximal C*-algebra of quotients are studied, notably in the setting of AW*-algebras. As a by-product we obtain a new example of a type I C*-algebra such that its second iterated local multiplier algebra is strictly larger than its local multiplier algebra.
Resumo:
We develop the basics of a theory of sheaves of C*-algebras and, in particular, compare it to the existing theory of C*-bundles. The details of two fundamental examples, the local multiplier sheaf and the injective envelope sheaf, are discussed.
Resumo:
We prove that every unital bounded linear mapping from a unital purely infinite C*-algebra of real rank zero into a unital Banach algebra which preserves elements of square zero is a Jordan homomorphism. This entails a description of unital surjective spectral isometries as the Jordan isomorphisms in this setting.
Resumo:
In this work we characterise the C*-algebras $\mathcal{A}$ generated by projections with the property that every pair of projections in $\mathcal{A}$ has positive angle, as certain extensions of abelian algebras by algebras of compact operators. We show that this property is equivalent to a lattice theoretic property of projections and also to the property that the set of finite dimensional *-subalgebras of $\mathcal{A}$ is directed.
Resumo:
We prove that unital surjective spectral isometries on certain non-simple unital C*-algebras are Jordan isomorphisms. Along the way, we establish several general facts in the setting of semisimple Banach algebras.
Resumo:
We give a necessary and sufficient condition for two ax+b-like groups to have isomorphic C*-algebras. In particular, we show that there are many non-isomorphic ax+b -like Lie groups having isomorphic group C*-algebras.
Resumo:
We consider in this paper the family of exponential Lie groups Gn,µ, whose Lie algebra is an extension of the Heisenberg Lie algebra by the reals and whose quotient group by the centre of the Heisenberg group is an ax + b-like group. The C*-algebras of the groups Gn,µ give new examples of almost C0(K)-C*-algebras.<br/>