14 resultados para adaptive learning
Resumo:
This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.
Resumo:
Process monitoring and Predictive Maintenance (PdM) are gaining increasing attention in most manufacturing environments as a means of reducing maintenance related costs and downtime. This is especially true in industries that are data intensive such as semiconductor manufacturing. In this paper an adaptive PdM based flexible maintenance scheduling decision support system, which pays particular attention to associated opportunity and risk costs, is presented. The proposed system, which employs Machine Learning and regularized regression methods, exploits new information as it becomes available from newly processed components to refine remaining useful life estimates and associated costs and risks. The system has been validated on a real industrial dataset related to an Ion Beam Etching process for semiconductor manufacturing.
Resumo:
Abstract Adaptability to changing circumstances is a key feature of living creatures. Understanding such adaptive processes is central to developing successful autonomous artifacts. In this paper two perspectives are brought to bear on the issue of adaptability. The first is a short term perspective which looks at adaptability in terms of the interactions between the agent and the environment. The second perspective involves a hierarchical evolutionary model which seeks to identify higher-order forms of adaptability based on the concept of adaptive meta-constructs. Task orientated and agent-centered models of adaptive processes in artifacts are considered from these two perspectives. The former isrepresented by the fitness function approach found in evolutionary learning, and the latter in terms of the concepts of empowerment and homeokinesis found in models derived from the self-organizing systems approach. A meta-construct approach to adaptability based on the identification of higher level meta-metrics is also outlined. 2009 Published by Elsevier B.V.
Resumo:
Recent years have witnessed an incredibly increasing interest in the topic of incremental learning. Unlike conventional machine learning situations, data flow targeted by incremental learning becomes available continuously over time. Accordingly, it is desirable to be able to abandon the traditional assumption of the availability of representative training data during the training period to develop decision boundaries. Under scenarios of continuous data flow, the challenge is how to transform the vast amount of stream raw data into information and knowledge representation, and accumulate experience over time to support future decision-making process. In this paper, we propose a general adaptive incremental learning framework named ADAIN that is capable of learning from continuous raw data, accumulating experience over time, and using such knowledge to improve future learning and prediction performance. Detailed system level architecture and design strategies are presented in this paper. Simulation results over several real-world data sets are used to validate the effectiveness of this method.
Resumo:
In this paper, we propose a novel visual tracking framework, based on a decision-theoretic online learning algorithm namely NormalHedge. To make NormalHedge more robust against noise, we propose an adaptive NormalHedge algorithm, which exploits the historic information of each expert to perform more accurate prediction than the standard NormalHedge. Technically, we use a set of weighted experts to predict the state of the target to be tracked over time. The weight of each expert is online learned by pushing the cumulative regret of the learner towards that of the expert. Our simulation experiments demonstrate the effectiveness of the proposed adaptive NormalHedge, compared to the standard NormalHedge method. Furthermore, the experimental results of several challenging video sequences show that the proposed tracking method outperforms several state-of-the-art methods.
Resumo:
Institutions involved in the provision of tertiary education across Europe are feeling the pinch. European universities, and other higher education (HE) institutions, must operate in a climate where the pressure of government spending cuts (Garben, 2012) is in stark juxtaposition to the EU’s strategy to drive forward and maintain a growth of student numbers in the sector (eurostat, 2015).
In order to remain competitive, universities and HE institutions are making ever-greater use of electronic assessment (E-Assessment) systems (Chatzigavriil et all, 2015; Ferrell, 2012). These systems are attractive primarily because they offer a cost-effect and scalable approach for assessment. In addition to scalability, they also offer reliability, consistency and impartiality; furthermore, from the perspective of a student they are most popular because they can offer instant feedback (Walet, 2012).
There are disadvantages, though.
First, feedback is often returned to a student immediately on competition of their assessment. While it is possible to disable the instant feedback option (this is often the case during an end of semester exam period when assessment scores must be can be ratified before release), however, this option tends to be a global ‘all on’ or ‘all off’ configuration option which is controlled centrally rather than configurable on a per-assessment basis.
If a formative in-term assessment is to be taken by multiple groups of
students, each at different times, this restriction means that answers to each question will be disclosed to the first group of students undertaking the assessment. As soon as the answers are released “into the wild” the academic integrity of the assessment is lost for subsequent student groups.
Second, the style of feedback provided to a student for each question is often limited to a simple ‘correct’ or ‘incorrect’ indicator. While this type of feedback has its place, it often does not provide a student with enough insight to improve their understanding of a topic that they did not answer correctly.
Most E-Assessment systems boast a wide range of question types including Multiple Choice, Multiple Response, Free Text Entry/Text Matching and Numerical questions. The design of these types of questions is often quite restrictive and formulaic, which has a knock-on effect on the quality of feedback that can be provided in each case.
Multiple Choice Questions (MCQs) are most prevalent as they are the most prescriptive and therefore most the straightforward to mark consistently. They are also the most amenable question types, which allow easy provision of meaningful, relevant feedback to each possible outcome chosen.
Text matching questions tend to be more problematic due to their free text entry nature. Common misspellings or case-sensitivity errors can often be accounted for by the software but they are by no means fool proof, as it is very difficult to predict in advance the range of possible variations on an answer that would be considered worthy of marks by a manual marker of a paper based equivalent of the same question.
Numerical questions are similarly restricted. An answer can be checked for accuracy or whether it is within a certain range of the correct answer, but unless it is a special purpose-built mathematical E-Assessment system the system is unlikely to have computational capability and so cannot, for example, account for “method marks” which are commonly awarded in paper-based marking.
From a pedagogical perspective, the importance of providing useful formative feedback to students at a point in their learning when they can benefit from the feedback and put it to use must not be understated (Grieve et all, 2015; Ferrell, 2012).
In this work, we propose a number of software-based solutions, which will overcome the limitations and inflexibilities of existing E-Assessment systems.
Resumo:
Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.
Resumo:
Our key contribution is a flexible, automated marking system that adds desirable functionality to existing E-Assessment systems. In our approach, any given E-Assessment system is relegated to a data-collection mechanism, whereas marking and the generation and distribution of personalised per-student feedback is handled separately by our own system. This allows content-rich Microsoft Word feedback documents to be generated and distributed to every student simultaneously according to a per-assessment schedule.
The feedback is adaptive in that it corresponds to the answers given by the student and provides guidance on where they may have gone wrong. It is not limited to simple multiple choice which are the most prescriptive question type offered by most E-Assessment Systems and as such most straightforward to mark consistently and provide individual per-alternative feedback strings. It is also better equipped to handle the use of mathematical symbols and images within the feedback documents which is more flexible than existing E-Assessment systems, which can only handle simple text strings.
As well as MCQs the system reliably and robustly handles Multiple Response, Text Matching and Numeric style questions in a more flexible manner than Questionmark: Perception and other E-Assessment Systems. It can also reliably handle multi-part questions where the response to an earlier question influences the answer to a later one and can adjust both scoring and feedback appropriately.
New question formats can be added at any time provided a corresponding marking method conforming to certain templates can also be programmed. Indeed, any question type for which a programmatic method of marking can be devised may be supported by our system. Furthermore, since the student’s response to each is question is marked programmatically, our system can be set to allow for minor deviations from the correct answer, and if appropriate award partial marks.
Resumo:
Traditional heuristic approaches to the Examination Timetabling Problem normally utilize a stochastic method during Optimization for the selection of the next examination to be considered for timetabling within the neighbourhood search process. This paper presents a technique whereby the stochastic method has been augmented with information from a weighted list gathered during the initial adaptive construction phase, with the purpose of intelligently directing examination selection. In addition, a Reinforcement Learning technique has been adapted to identify the most effective portions of the weighted list in terms of facilitating the greatest potential for overall solution improvement. The technique is tested against the 2007 International Timetabling Competition datasets with solutions generated within a time frame specified by the competition organizers. The results generated are better than those of the competition winner in seven of the twelve examinations, while being competitive for the remaining five examinations. This paper also shows experimentally how using reinforcement learning has improved upon our previous technique.