95 resultados para Variable hydrologique
Resumo:
Variable geometry turbines provide an extra degree of flexibility in air management in turbocharged engines. The pivoting stator vanes used to achieve the variable turbine geometry necessitate the inclusion of stator vane endwall clearances. The consequent leakage flow through the endwall clearances impacts the flow in the stator vane passages and an understanding of the impact of the leakage flow on stator loss is required. A numerical model of a typical variable geometry turbine was developed using the commercial CFX-10 computational fluid dynamics software, and validated using laser doppler velocimetry and static pressure measurements from a variable geometry turbine with stator vane endwall clearance. Two different stator vane positions were investigated, each at three different operating conditions representing different vane loadings. The vane endwall leakage was found to have a significant impact on the stator loss and on the uniformity of flow entering the turbine rotor. The leakage flow changed considerably at different vane positions and flow incidence at vane inlet was found to have a significant impact.
Resumo:
With the advent of new video standards such as MPEG-4 part-10 and H.264/H.26L, demands for advanced video coding, particularly in the area of variable block size video motion estimation (VBSME), are increasing. In this paper, we propose a new one-dimensional (1-D) very large-scale integration architecture for full-search VBSME (FSVBSME). The VBS sum of absolute differences (SAD) computation is performed by re-using the results of smaller sub-block computations. These are distributed and combined by incorporating a shuffling mechanism within each processing element. Whereas a conventional 1-D architecture can process only one motion vector (MV), this new architecture can process up to 41 MV sub-blocks (within a macroblock) in the same number of clock cycles.
Resumo:
We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
Resumo:
There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite- dimensional state using a dichotomic observable.
Resumo:
Measures of entanglement, fidelity, and purity are basic yardsticks in quantum-information processing. We propose how to implement these measures using linear devices and homodyne detectors for continuous-variable Gaussian states. In particular, the test of entanglement becomes simple with some prior knowledge that is relevant to current experiments.