6 resultados para UNMANNED UNDERWATER VEHICLES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel technique for mapping and exploration using cooperating autonomous underwater vehicles. Rather than using the typical lawnmower sweep pattern to search an entire area, the proposed navigational plan involves guiding the formation directly towards each object of interest in turn, before arriving at a final goal position. This is achieved by the use of traditional artificial potential fields alongside counter-rotational potential fields. These clockwise and counter-clockwise fields are employed simultaneously by vehicles to ensure that the entire object is scanned rather than simply avoided as is the case with traditional collision avoidance techniques. The proposed methodology allows a formation to have fluid-like motion whilst a separation distance between cooperating agents (free of angular constraints) is maintained with a greater degree of flexibility than traditional formation control approaches. Owing to its nature, this technique is suited for applications such as exploration, mapping and underwater inspection to name a few. Simulation results demonstrate the efficacy of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One of the solutions is in a drive-by approach utilizing vehicle vibrations while the vehicle passes over the bridge. In this approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. This study aims to examine subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the drive-by method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V-shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V-shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in Matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to four times of the rated. A prototype of the V-shape interior PMSM is also manufactured and tested to validate the numerical models built by the FEM.