44 resultados para Thin Film Electroluminescent Devices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabrication of devices based on thin film structures deposited using the pulsed laser deposition technique relies on reproducibility and control of deposition rates over substrate areas as large as possible. Here we present an application of the random phase plate technique to smooth and homogenize the intensity distribution of a KrF laser footprint on the surface of a target which is to be ablated. It is demonstrated that intensity distributions over millimeter-sized spots on the target can be made insensitive to the typical changes that occur in the near-field intensity distribution of the ultraviolet output from a KrF laser. (C) 1999 American Institute of Physics. [S0034-6748(99)02504-6].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704655]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer of functional integrated circuit layers to other substrates is being investigated for smart-sensors, MEMS, 3-D ICs and mixed semiconductor circuits. There is a need for a planarisation and bondable layer which can be deposited at low temperature and which is IC compatible. This paper describes for the first time the successful use of sputtered silicon in this role for applications as outlined above where high temperature post bond anneals are not required. It also highlights the problems of using sputtered silicon as a bonding layer in applications where post bond temperatures greater than 400C are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed-laser deposition has been used to fabricate Au/Ba0.5Sr0.5TiO3/SrRuO3/MgO thin film capacitor structures. Crystallographic and microstructural investigations indicated that the Ba0.5Sr0.5TiO3 (BST) had grown epitaxially onto the SrRuO3 lower electrode, inducing in-plane compressive and out- of-plane tensile strain in the BST. The magnitude of strain developed increased systematically as film thickness decreased. At room temperature this composition of BST is paraelectric in bulk. However, polarization measurements suggested that strain had stabilized the ferroelectric state, and that the decrease in film thickness caused an increase in remanent polarization. An increase in the paraelectric-ferroelectric transition temperature upon a decrease in thickness was confirmed by dielectric measurements. Polarization loops were fitted to Landau-Ginzburg-Devonshire (LGD) polynomial expansion, from which a second order paraelectric-ferroelectric transition in the films was suggested at a thickness of similar to500 nm. Further, the LGD analysis showed that the observed changes in room temperature polarization were entirely consistent with strain coupling in the system. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin film capacitor structures in which the dielectric is composed of superlattices of the relaxors [0.2Pb(Zn1/3Nb2/3)O- 3-0.8BaTiO(3)] and Pb(Mg1/3Nb2/3)O-3 have been fabricated by pulsed laser deposition. Superlattice wavelength (Lambda) was varied between similar to3 and similar to 600 nm, and dielectric properties were investigated as a function of Lambda. Progressive enhancement of the dielectric constant was observed on decreasing Lambda, and, in contrast to previous work, this was not associated with the onset of Maxwell-Wagner behavior. Polarization measurements as a function of temperature suggested that the observed enhancement in dielectric constant was associated with the onset of a coupled response. The superlattice wavelength (Lambda =20 nm) at which coupled functional behavior became apparent is comparable to that found in literature for the onset of coupled structural behavior (between Lambda =5 nm and Lambda =10 nm). (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin-film capacitors, with barium strontium titanate (BST) dielectric layers between 7.5 and 950 nm in thickness, were fabricated by pulsed-laser deposition. Both crystallography and cation chemistry were consistent with successful growth of the BST perovskite. At room temperature, all capacitors displayed frequency dispersion such that epsilon (100 kHz)/epsilon (100 Hz) was greater than 0.75. The dielectric constant as a function of thickness was fitted, using the series capacitor model, for BST thicknesses greater than 70 nm. This yielded a large interfacial d(i)/epsilon (i) ratio of 0.40 +/-0.05 nm, implying a highly visible parasitic dead layer within the capacitor structure. Modeled consideration of the dielectric behavior for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/epsilon against d at the dead-layer thickness. In the capacitors studied here, no anomaly was observed. Hence, either (i) 7.5 nm is an upper limit for the total dead-layer thickness in the SRO/BST/Au system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed laser deposition was used to make a series of Au/Ba0.5Sr0.5TiO3 (BST)/SrRuO3/MgO thin film capacitors with dielectric thickness ranging from similar to15 nm to similar to1 mum. Surface grain size of the dielectric was monitored as a function of thickness using both atomic force microscopy and transmission electron microscopy. Grain size data were considered in conjunction with low field dielectric constant measurements. It was observed that the grain size decreased with decreasing thickness in a manner similar to the dielectric constant. Simple models were developed in which a functionally inferior layer at the grain boundary was considered as responsible for the observed dielectric behavior. If a purely columnar microstructure was assumed, then constant thickness grain-boundary dead layers could indeed reproduce the series capacitor dielectric response observed, even though such layers would contribute electrically in parallel with unaffected bulk- like BST. Best fits indicated that the dead layers would have a relative dielectric constant similar to40, and thickness of the order of tens of nanometers. For microstructures that were not purely columnar, models did not reproduce the observed dielectric behavior well. However, cross-sectional transmission electron microscopy indicated columnar microstructure, suggesting that grain boundary dead layers should be considered seriously in the overall dead-layer debate. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arrays of nickel and gold nanorods have been grown on glass and silicon substrates using porous alumina templates of less than 500 nm thickness. A method is demonstrated for varying the diameter of the nanorods whilst keeping the spacing constant. Optical extinction spectra for the gold nanorods show two distinct maxima associated with the transverse and longitudinal axes of the rods. Adding small quantities of oxygen to the aluminium before anodization is found to improve the sharpness of the extinction peaks. The spectral position of the longitudinal peak is shown to be sensitive to the nanorod diameter for constant length and spacing. For the nickel nanorods it is shown that the magnetic properties are governed by both interactions between the wires and shape anisotropy.