20 resultados para Tasso, Torquato, 1544-1595
Resumo:
Combination treatment regimens that include topoisomerase-II-targeted drugs, such as doxorubicin, are widely used in the treatment of breast cancer. Previously, we demonstrated that IFN-� and doxorubicin co-treatment synergistically induced apoptosis in MDA435 breast cancer cells in a STAT1-dependent manner. In this study, we found that this synergy was caspase 8-dependent. In addition, we found that IFN-γ down-regulated the expression of the caspase 8 inhibitor c-FLIP. Furthermore, IFN-� down-regulated c-FLIP in a manner that was dependent on the transcription factors STAT1 and IRF1. However, IFN-� had no effect on c-FLIP mRNA levels, indicating that c-FLIP was down-regulated at a post-transcriptional level following IFN-� treatment. Characterisation of the functional significance of c-FLIP modulation by siRNA gene silencing and stable over-expression studies, revealed it to be a key regulator of IFN-γ- and doxorubicin-induced apoptosis in MDA435 cells. Analysis of a panel of breast cancer cell lines indicated that c-FLIP was an important general determinant of doxorubicin- and IFN-�-induced apoptosis in breast cancer cells. Furthermore, c-FLIP gene silencing sensitised MDA435 cells to other chemotherapies, including etoposide, mitoxantrone and SN-38. These results suggest that c-FLIP plays a pivotal role in modulating drug-induced apoptosis in breast cancer cells.
Resumo:
The cosmopolitan genus Ceramium (Ceramiaceae, Rhodophyta) is a large and systematically complex group. The taxonomy of this genus remains in a chaotic state due to the high degree of morphological variation. Culture studies, suggesting a strong influence of environment on phenotype, and the use of molecular tools have recently questioned the validity of morphological features used in species recognition. Here we compare three Ceramium taxa from Venice lagoon with samples from northwest Europe using the plastid ribulose-1,5-bisphosphate carboxylase/oxygenase gene (rbcL) and the rbcL-rbcS intergenic spacer combined with morphological observations. A strongly banded species, previously identified as member of a poorly understood and misnamed group, the Ceramium diaphanum complex sensu Feldmann-Mazoyer, is probably conspecific with British samples of Ceramium diaphanum sensu Harvey, for which no valid name has been identified up to now. We show that Ceramium polyceras (Kutzing) Zanardini is a valid name for this species. A fully corticated Ceramium species morphologically resembling C. secundatum differs at the species level from Atlantic C. secundatum; a valid name for this entity is Ceramium derbesii Solier ex Kutzing, described from Mediterranean France. A third species characterized by cortical spines, previously listed as Ceramium ciliation var. robustum (J. Agardh) Mazoyer, is shown to be Ceramium nudiusculum (Kutzing) Rabenhorst, originally described from Venice.
Resumo:
Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey x Holstein-Friesian (J x HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) x 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J x HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J x HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J x HF cows, whereas the J x HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype x environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.
Resumo:
Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.
Resumo:
Alport syndrome is a hereditary nephritis that may lead to end-stage renal disease (ESRD) in young adult life and is often associated with sensorineural deafness and/or ocular abnormalities. The majority of families are X-linked due to mutations in the COL4A5 gene at Xq22. Autosomal forms of the disease are also recognized with recessive disease, having been shown to be due to mutations in the COL4A3 and COL4A4 genes on chromosome 2. Familial benign haematuria has also been mapped to this region in some families.
Resumo:
Dynamic microtubules (MTs) are required for neuronal guidance, in which axons extend directionally toward their target tissues. We found that depletion of the MT-binding protein Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) or treatment with the MT drug Taxol reduced axon outgrowth in spinal cord neurons. To quantify the dynamic distribution of MTs in axons, we developed an automated algorithm to detect and track MT plus ends that have been fluorescently labeled by end-binding protein 3 (EB3). XCLASP1 depletion reduced MT advance rates in neuronal growth cones, very much like treatment with Taxol, demonstrating a potential link between MT dynamics in the growth cone and axon extension. Automatic tracking of EB3 comets in different compartments revealed that MTs increasingly slowed as they passed from the axon shaft into the growth cone and filopodia. We used speckle microscopy to demonstrate that MTs experience retrograde flow at the leading edge. Microtubule advance in growth cone and filopodia was strongly reduced in XCLASP1-depleted axons as compared with control axons, but actin retrograde flow remained unchanged. Instead, we found that XCLASP1-depleted growth cones lacked lamellipodial actin organization characteristic of protrusion. Lamellipodial architecture depended on XCLASP1 and its capacity to associate with MTs, highlighting the importance of XCLASP1 in actin-microtubule interactions.
Resumo:
Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plantspecific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.
Resumo:
The potential for implementation of retrodirective arrays as antenna terminals for future integrated satellite and terrestrial mobile communications is discussed in this paper. Particularly, in the context of the Inmarsat L-band system we address the issues related to array antenna element capacity to produce high-quality circular polarized radiation pattern over large angles of arrival. We also discuss circuitry reduction methodologies and their effect on retrodirected beam characteristics. The possibility of circular polarization modulation of the re-transmit signal is also discussed.
Resumo:
Propionibacterium acnes and coagulase-negative staphylococci (CoNS) are opportunistic pathogens implicated in prosthetic joint and fracture fixation device-related infections. The purpose of this study was to determine whether P. acnes and the CoNS species Staphylococcus lugdunensis, isolated from an "aseptically failed" prosthetic hip joint and a united intramedullary nail-fixed tibial fracture, respectively, could cause osteomyelitis in an established implant-related osteomyelitis model in rabbits in the absence of wear debris from the implant material. The histological features of P. acnes infection in the in vivo rabbit model were consistent with localized pyogenic osteomyelitis, and a biofilm was present on all explanted intramedullary (IM) nails. The animals displayed no outward signs of infection, such as swelling, lameness, weight loss, or elevated white blood cell count. In contrast, infection with S. lugdunensis resulted in histological features consistent with both pyogenic osteomyelitis and septic arthritis, and all S. lugdunensis-infected animals displayed weight loss and an elevated white blood cell count despite biofilm detection in only two out of six rabbits. The differences in the histological and bacteriological profiles of the two species in this rabbit model of infection are reflective of their different clinical presentations: low-grade infection in the case of P. acnes and acute infection for S. lugdunensis. These results are especially important in light of the growing recognition of chronic P. acnes biofilm infections in prosthetic joint failure and nonunion of fracture fixations, which may be currently reported as "aseptic" failure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.