73 resultados para Surface-Active Agents
Resumo:
We show that a significant increase in the gain and front-to-back ratio is obtained when different high impedance surface (HIS) sections are placed below the active regions of an Archimedean spiral antenna. The principle of operation is demonstrated at 3, 6, and 9 GHz for an antenna design that employs a ground plane composed of two dissimilar HISs. The unit cells of the HISs are collocated and resonant at the same frequency as the 3- and 6-GHz active regions of the wideband spiral. It is shown that the former HIS must also be designed to resonate at 9 GHz to avoid the generation of a boresight null that occurs because the structure is physically large enough to support higher-order modes. The improvement that is obtained at each of the three frequencies investigated is shown by comparing the predicted and measured radiation patterns for the free space and HIS-backed antenna.
Resumo:
We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase.
Resumo:
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.
Resumo:
The process of using solar energy to split water to produce hydrogen assisted by an inorganic semiconductor is crucial for solving our energy crisis and environmental problems in the future. However, most semiconductor photocatalysts would not exhibit excellent photocatalytic activity without loading suitable co-catalysts. Generally, the noble metals have been widely applied as co-catalysts, but always agglomerate during the loading process or photocatalytic reaction. Therefore, the utilization efficiency of the noble co-catalysts is still very low on a per metal atom basis if no obvious size effect exists, because heterogeneous catalytic reactions occur on the surface active atoms. Here, for the first time, we have synthesized isolated metal atoms (Pt, Pd, Rh, or Ru) stably by anchoring on TiO2, a model photocatalystic system, by a facile one-step method. The isolated metal atom based photocatalysts show excellent stability for H-2 evolution and can lead to a 6-13-fold increase in photocatalytic activity over the metal clusters loaded on TiO2 by the traditional method. Furthermore, the configurations of isolated atoms as well as the originality of their unusual stability were analyzed by a collaborative work from both experiments and theoretical calculations.
Resumo:
Abstract There is considerable interest in developing medical devices that provide controlled delivery of biologically active agents, for example, to reduce the incidence of device-related infection. Silicone elastomers are one of the commonest biomaterials used in medical device production. However, they have a relatively high coefficient of friction and the resulting lack of lubricity can cause pain and tissue damage on device insertion and removal. Novel silicone cross-linking agents have recently been reported that produce inherently ‘self-lubricating’ silicone elastomers with very low coefficients of friction. In this study, the model antibacterial drug metronidazole has been incorporated into these self-lubricating silicone elastomers to produce a novel bioactive biomaterial. The in vitro release characteristics of the bioactive component were evaluated as a function of cross-linker composition and drug loading. Although conventional matrix-type release kinetics were observed for metronidazole from the silicone systems, it was also observed that increasing the concentration of the cross-linking agent responsible for the lubricious character (tetra(oleyloxy)silane) relative to that of the standard non-lubricious cross-linking agent (tetrapropoxysilane) produced an increase in the metronidazole flux rate by up to 65% for a specified drug loading. The results highlight the potential for developing lubricious silicone medical devices with enhanced drug release characteristics.
Resumo:
Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. Development of a material not needing vibration for compaction—i.e. selfcompacting concrete (SCC)—has successfully met the challenge and is now increasingly being used in routine practice. The key to the improvement of fresh concrete performance has been nanoscale tailoring of molecules for surface active admixtures, as well as improved understanding of particle packing and of the role of mineral surfaces in cementitious matrixes. Fundamental studies of rheological behaviour of cementitious particle suspensions were soon expanded to extensive innovation programmes incorporating applied research, site experiments, instrumented full scale applications supporting technology, standards and guides, information efforts as well as training programmes. The major impact of the introduction of SCC is connected to the production process. The choice and handling of constituents are modified as well as mix design, batching, mixing and transporting. The productivity is drastically improved through elimination of vibration compaction and process reorganisation. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, the technology is improving performance in terms of hardened material properties like surface quality, strength and durability.
Resumo:
In matters of social research sociologists and other social scientists have tended to view documents primarily as sources of evidence and as receptacles of inert content.The key strategies for data exploration have consequently been associated with various styles of content or thematic analysis. Even when discourse analysis has been recommended, there has been a marked tendency to deal with records, files, and the like, primarily as containers - things to be read, understood, and categorized. In this article, however, the author seeks to demonstrate that by focussing on the functioning of documents instead of content, sociology can embrace a much wider range of approaches to both data collection and analysis. Indeed, the adoption of such a programme encourages researchers to see documents as active agents in the world, and to view documentation as a key component of dynamic networks rather than as a set of static and immutable 'things'.
Resumo:
Studies of the female partners of politically motivated prisoners have generally studied women via a caring paradigm. Less well observed are those women who privately transgressed and challenged masculine-centred renditions or political imprisonment. This lacuna in the research dedicated to such women has been constructed around stereotypical depictions of them as a barely visible support network. We argue that the relatively indiscernible appearance of women who challenged such typecasting is attached to a persistent process of gender blindness within which women remain peripheral to wider narratives of collectivity and ideological presentation. We chart how some women actively involved themselves in creating their own identity as active agents, especially when the effects of conflict entered the private sphere.
Resumo:
The study of urban and landscape history has recently questioned the peripheral condition of certain areas and re-examined them as valuable parts of an international network . In such a framework cities are not only recipients of foreign influences but active agents in their own urban transformations. Meanwhile, the regeneration of urban waterfronts appears increasingly in the spotlight globally , but the re-use of the waterfront as public space began more than a century ago.
Buenos Aires is an example of a ‘peripheral’ city, in which waterfront parks at the end of the nineteenth century were the product of international influences combined with local conditions, needs and expertise. Buenos Aires developed a continuous increase and diversity of leisure waterfront space, making it different from most European or ‘central’ cities. This paper will analyse the process of translation of landscape design on Buenos Aires’ waterfront while outlining the significance of waterfront parks to the city and its growing urban population.
Resumo:
Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.
Resumo:
Background: Vaginal ring devices are being actively developed for controlled delivery of HIV microbicides and as multi-purpose prevention technology (MPT) products combining hormonal contraception with prevention of HIV and other sexually transmitted diseases. Presently, there is no reliable method for monitoring user adherence in HIV vaginal ring trials; previous acceptability studies have included some type of participant self-reporting mechanism, which have often been unreliable. More objective, quantitative and accurate methods for assessing adherence are needed.
Methods: A silicone elastomer vaginal ring containing an encapsulated miniature temperature recording device has been developed that can capture and store real-time temperature data during the period of designated use. Devices were tested in both simulated vaginal environments and following vaginal placement in cynomolgus macaques. Various use protocols and data sampling rates were tested to simulate typical patient usage scenarios. Results: The temperature logging devices accurately recorded vaginal temperature in macaques, clearly showing the regular diurnal temperature cycle. When environmental temperature and vaginal temperature was significantly different, the device was able to accurately pinpoint the insertion and removal times. Based on the data collected it was possible to infer removal periods as short as 5 min when the external environmental temperature was 25 °C. Accuracy increased with data sampling rate. Conclusions: This work provides proof-of-concept for monitoring adherence using a vaginal ring device containing an encapsulated temperature logger. The addition of one or more active agents into the ring body is not anticipated to affect the temperature monitoring function. A clinical study to compare self- reported user adherence data with that obtained by the device would be highly informative.
Resumo:
The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.
Resumo:
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.