20 resultados para Subterranean Clover
Resumo:
Background: Isoflavones are estrogen-like plant compounds that may protect against cardiovascular disease and endocrine-responsive cancer. Isoflavones may, because of their ability to act as selective estrogen receptor modulators, alter insulin-like growth factor (IGF) status.
Resumo:
Small rodents with a large surf ace-area-to-volume ratio and a high thermal conductance are likely to experience conditions where they have to expend large: amounts of energy in order to maintain a constant body temperature at low ambient temperatures. The survival of small rodents is thus dependent on their ability to reduce heat loss and increase heat production at low ambient temperatures. Two such animals are the social subterranean rodents Cryptomys damarensis (the Damaraland mole-rat) and Cryptomys hottentotus natalensis (the Natal mole-rat). This study examined the energy savings associated with huddling as a behavioural thermoregulatory mechanism to conserve energy in both these species. Individual oxygen consumption (VO2) was measured in groups ranging in size from one to 15 huddling animals for both species at ambient temperatures of 14, 18, 22, 26 and 30 degrees C. Savings in energy (VO2) were then compared between the two species. Significant differences in VO2 (p
Resumo:
Subterranean mammals (those that live and forage underground) inhabit a challenging microenvironment, with high levels of carbon dioxide and low levels of oxygen. Consequently, they have evolved specialised morphological and physiological adaptations. For small mammals that inhabit high altitudes, the effects of cold are compounded by low oxygen partial pressures. Hence, subterranean mammals living at high altitudes are faced with a uniquely demanding physiological environment, which presumably necessitates additional physiological adjustments. We examined the thermoregulatory capabilities of two populations of Lesotho mole-rat Cryptomys hottentotus mahali that inhabit a 'low' (1600 in) and a 'high' (3200 m) altitude. Mole-rats from the high altitude had a lower temperature of the lower critical point, a broader thermoneutral zone, a lower thermal conductance and greater regulatory non-shivering thermogenesis than animals from the lower altitude. However, minimum resting metabolic rate values were not significantly different between the populations and were low compared with allometric predictions. We suggest that thermoregulatory costs may in part be met by animals maintaining a low resting metabolic rate. High-altitude animals may adjust to their cooler, more oxygen-deficient environment by having an increased non-shivering thermogenesis whilst maintaining low thermal conductance. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
While females are traditionally thought to invest more time and energy into parental care than males, males often invest more resources into searching and displaying for mates, obtaining mates and in male-male conflict. Solitary subterranean mammals perform these activities in a particularly challenging niche, necessitating energetically expensive burrowing to both search for mates and forage for food. This restriction presumably affects males more than females as the former are thought to dig longer tunnels that cover greater distances to search for females. We excavated burrow systems of male and female Cape dune mole rats Bathyergus suillus the, largest truly subterranean mammal, to investigate whether male burrows differ from those of females in ways that reflect mate searching by males. We consider burrow architecture (length, internal dimensions, fractal dimension of tunnel systems, number of nesting chambers and mole mounds on the surface) in relation to mating strategy. Males excavated significantly longer burrow systems with higher fractal dimensions and larger burrow areas than females. Male burrow systems were also significantly farther from one another than females were from other females' burrow systems. However, no sex differences were evident in tunnel cross-sectional area, mass of soil excavated per mound, number of mounds produced per unit burrow length or mass of soil excavated per burrow system. Hence, while males may use their habitat differently from females, they do not appear to differ in the dimensions of the tunnels they create. Thus, exploration and use of the habitat differs between the sexes, which may be a consequence of sex differences in mating behaviour and greater demands for food.