19 resultados para Subharmonic bifurcation
Resumo:
The focused ion beam microscope has been used to cut parallel-sided {100}-oriented thin lamellae of single crystal barium titanate with controlled thicknesses, ranging from 530 nm to 70 nm. Scanning transmission electron microscopy has been used to examine domain configurations. In all cases, stripe domains were observed with {011}-type domain walls in perovskite unit-cell axes, suggesting 90 degrees domains with polarization in the plane of the lamellae. The domain widths were found to vary as the square root of the lamellar thickness, consistent with Kittel's law, and its later development by Mitsui and Furuichi and by Roytburd. An investigation into the manner in which domain period adapts to thickness gradient was undertaken on both wedge-shaped lamellae and lamellae with discrete terraces. It was found that when the thickness gradient was perpendicular to the domain walls, a continuous change in domain periodicity occurred, but if the thickness gradient was parallel to the domain walls, periodicity changes were accommodated through discrete domain bifurcation. Data were then compared with other work in literature, on both ferroelectric and ferromagnetic systems, from which conclusions on the widespread applicability of Kittel's law in ferroics were made.
Resumo:
We report on the electric-field-generated effects in the nematic phase of a twin mesogen formed of bent-core and calamitic units, aligned homeotropically in the initial ground state and examined beyond the dielectric inversion point. The bend-Freedericksz (BF) state occurring at the primary bifurcation and containing a network of umbilics is metastable; we focus here on the degenerate planar (DP) configuration that establishes itself at the expense of the BF state in the course of an anchoring transition. In the DP regime, normal rolls, broad domains, and chevrons (both defect-mediated and defect-free types) form at various linear defect-sites, in different regions of the frequency-voltage plane. A significant novel aspect common to all these patterned states is the sustained propagative instability, which does not seem explicable on the basis of known driving mechanisms.
Resumo:
A modified abstract version of the Comprehensive Aquatic Simulation Model (CASM) is found to exhibit three types of folded bifurcations due to nutrient loading. The resulting bifurcation diagrams account for nonlinear dynamics such as regime shifts and cyclic changes between clear-water state and turbid state that have actually been observed in real lakes. In particular, pulse-perturbation simulations based on the model presented suggest that temporal behaviors of real lakes after biomanipulations can be explained by pulse-dynamics in complex ecosystems, and that not only the amplitude (manipulated abundance of organisms) but also the phase (timing) is important for restoring lakes by biomanipulation. Ecosystem management in terms of possible irreversible changes in ecosystems induced by regime shifts is also discussed. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
An algorithm is presented which generates pairs of oscillatory random time series which have identical periodograms but differ in the number of oscillations. This result indicates the intrinsic limitations of spectral methods when it comes to the task of measuring frequencies. Other examples, one from medicine and one from bifurcation theory, are given, which also exhibit these limitations of spectral methods. For two methods of spectral estimation it is verified that the particular way end points are treated, which is specific to each method, is, for long enough time series, not relevant for the main result.
Resumo:
We report on chevrons (herringbonelike patterns) observed in homeotropically aligned liquid crystals with high electric conductivity. We focus our attention on two types of chevrons observed in the conduction regime. The threshold voltage and the characteristic double periodicity of chevrons (i.e., the short wavelength lambda(1) of the striated rolls and the long wavelength lambda(2) Of the chevron bands) have been measured as functions of the applied electric frequency f. With the aid of a crossed polarizer set, we have, in addition, determined the director field which shows a periodic in-plane rotation for our chevrons (with a wavelength lambda(2)) We arrived at the types of chevrons after qualitatively different bifurcation sequences with increasing voltage. The frequency dependence of lambda(2) also shows a qualitatively different behavior with respect to the two types of chevrons. The experimental results are discussed in terms of recent theoretical investigations.
Resumo:
Ensembles of charged particles (plasmas) are a highly complex form of matter, most often modeled as a many-body system characterized by weak inter-particle interactions (electrostatic coupling). However, strongly-coupled plasma configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in discharge experiments. In this paper, the nonlinear aspects involved in the motion of charged dust grains in a one-dimensional plasma monolayer (crystal) are discussed. Different types of collective excitations are reviewed, and characteristics and conditions for their occurrence in dusty plasma crystals are discussed, in a quasi-continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic solitary longitudinal excitations, as well as modulated envelope localized modes associated with longitudinal and transverse vibrations. Furthermore, the possibility for intrinsic localized modes (ILMs) — Discrete Breathers (DBs) — to occur is investigated, from first principles. The effect of mode-coupling is also briefly considered. The relation to previous results on atomic chains, and also to experimental results on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.
Resumo:
The experimental study of the behavior of deuterium plasma with densities between 2 X 1018 and 2 x 10(20) cm(-3), subjected to a 6 TW, 30 ps, 3 X 10(18) W cm(-2) laser pulse, is presented Conclusive experimental proof that a single straight channel is generated when the laser pulse interacts with the lowest densities is provided This channel shows no small-scale longitudinal density modulations, extends up to 2 mm in length and persists for up to 150 ps after the peak of the interaction Bifurcation of the channel after 1 mm propagation distance is observed for the first time For higher density interactions, above the relativistic self-focusing threshold, bubblelike structures are observed to form at late times These observations have implications for both laser wakefield accelerators and fast ignition inertial fusion studies (C) 2010 American Institute of Physics [doi 10 1063/1 3505305]
Resumo:
The recent adiabatic saddle-point method of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is applied to study strong-field photodetachment of H- by few-cycle linearly polarized laser pulses of frequencies near the two-photon detachment threshold. The behavior of the saddle points in the complex-time plane for a range of laser parameters is explored. A detailed analysis of the influence of laser intensities [(2×1011)–(6.5 × 1011) W/cm2], midinfrared laser wavelengths (1800–2700 nm), and various values of the carrier envelope phase (CEP) on (i) three-dimensional probability detachment distributions, (ii) photoangular distributions (PADs), (iii) energy spectra, and (iv) momentum distributions are presented. Examination of the probability distributions and PADs reveal main lobes and jetlike structures. Bifurcation phenomena in the probability distributions and PADs are also observed as the wavelength and intensity increase. Our simulations show that the (i) probability distributions, (ii) PADs, and (iii) energy spectra are extremely sensitive to the CEP and thus measuring such distributions provides a useful tool for determining this phase. The symmetrical properties of the electron momentum distributions are also found to be strongly correlated with the CEP and this provides an additional robust method for measuring the CEP of a laser pulse. Our calculations further show that for a three-cycle pulse inclusion of all eight saddle points is required in the evaluation of the transition amplitude to yield an accurate description of the photodetachment process. This is in contrast to recent results for a five-cycle pulse.
Resumo:
Title: Boundary-setting as a core activity in complex public systems
Authors: Joanne Murphy & Mary Lee Rhodes
The definition of the boundary of a system is at the core of any systems approach (Midgley 2000; 2003). By defining boundaries we enable – and delimit – the range of outcomes sought and the actions and resources that can be brought to bear. In complex adaptive systems (CAS) analysis, the conceptualisaion and definition of boundaries is particularly challenging as they are constantly undergoing redefinition through agent action, interaction and entry/exit. (Rhodes et al 2011). The concept of ‘boundaries’ appears regularly in a wide range of literature around public management, administration, geopolitics, regeneration and organisational development. Discussions around boundaries focus on many things from concrete physical manifestations and barriers, to virtual interfaces between one organisational unit and another, or even entirely theoretical demarcations between different schools of thought (Kaboolian, 1998, Levi-Faur, 2004, Agranoff & McGuire, 2004).
However, managing ‘beyond’ such boundaries is a routinely recurring aspiration that transcends sectors and local concerns. Unsurprisingly then, there is an increasing understanding of the need to acknowledge and manage such boundaries (whether they be physical, social or organisational) within public management as a discipline (Currie et al 2007, Fitzsimmons and White, 1997, Murtagh, 2002). This paper explores the impact of boundaries on public management strategic decision-making in the sectors of urban regeneration and healthcare. In particular, it focuses on demarcations to physical space, communal identity and within professional relationships in these sectors.
The first section describes the research that gave rise to the paper and the cases examined. Next we briefly define what we mean by boundaries. We explore issues that have emerged from our analysis of urban regeneration and health care singularly, before looking at how the concept of boundaries is a recurrent concern across the sectors. The main contribution of the paper is an exploration of how a CAS lens can bring a new insight into the concept of boundaries and decision-making in the two sets of case studies. This discussion will concentrate on initial conditions, bifurcation and adaptation as key CAS factors in relation to boundaries. We conclude with a brief discussion on the benefits of a CAS lens to an analysis of boundaries in public management decision-making.
References:
Agranoff, R. and McGuire, M. (2003) Collaborative Public Management: Strategies for Local Government. Washington, DC: Georgetown Univ. Press.
Currie, G., Lockett, A. (2007) “A critique of transformational leadership: moral, professional & contingent dimensions of leadership within public services organizations”. Human Relations 60: 341-370.
Fitzsimmons and White, (1997) "Crossing boundaries: communication between professional groups", Journal of Management in Medicine, Vol. 11 Iss: 2, pp.96 – 101
Kaboolian, L. (1998) “The New Public Management: Challenging the Boundaries of the Management vs. Administration Debate” Public Administration Review Vol. 58, No. 3 pp.189-193
Levi-Faur D. and Vigoda-Gadot Eran (eds) (2004) International Public Policy and Management: Policy Learning Beyond Regional, Cultural and Political Boundaries, Marcel Dekker,
Midgley, G. (ed) (2003) Systems Thinking. London: Sage Publications
Midgley, G. (2000) Systemic Intervention: Philosophy, Methodology and Practice. New York, NY: Kluwer.
Murtagh, B. (2002). The Politics of Territory: Policy and Segregation in Northern Ireland. Basingstoke, Palgrave.
Rhodes, ML, Joanne Murphy, Jenny Muir, John Murray (2011) Public Management & Complexity Theory: Richer Decision Making in Irish Public Services, UK: Routledge
Resumo:
Histone deacetylase 3 (HDAC3) is known to play a crucial role in the differentiation of endothelial progenitors. The role of HDAC3 in mature endothelial cells, however, is not well understood. Here, we investigated the function of HDAC3 in preserving endothelial integrity in areas of disturbed blood flow, ie, bifurcation areas prone to atherosclerosis development.
Resumo:
The paper examines three aspects of demographic change and conjectures about their wider impact on British society. Two features of fertility behaviour are highlighted. The first deals with ethnic variations and the likely continuation of high fertility rates amongst women of South Asian origin. The second involves the continued bifurcation between career women and those for whom motherhood remains a central life project. International migration is also assessed and the contradictions within the 'Fortress Britain' strategy exposed. Britain will continue to receive migrants from overseas and British society will become increasingly multi-ethnic. The paper also examines the tensions between an increasingly ageing population and the development of increased ethnic and cultural diversity. The paper concludes with some implications of these changes for the discipline of sociology itself.
Resumo:
Experimental standing wave oscillations of the interfacial potential across an electrode have been observed in the electrocatalytic oxidation of formic acid on a Pt ring working electrode. The instantaneous potential distribution was monitored by means of equispaced potential microprobes along the electrode. The oscillatory standing waves spontaneously arose from a homogeneous stationary state prior to a Hopf bifurcation if the reference electrode was placed close to the working electrode. Reduced electrolyte concentrations resulted in aperiodic potential patterns, while the presence of a sufficiently large ohmic resistance completely suppressed spatial inhomogeneities. The experimental findings confirm numerical predictions of a reaction-migration formalism: under the chosen geometry, a long-range negative potential coupling between distant points across the ring electrode can lead to oscillatory potential domains of distinct phase. It is further shown that the occurrence of oscillatory standing waves can be rationalized as the electrochemical equivalent of Turing's second bifurcation (wave bifurcation). In the presence of an external resistance, the coupling becomes positive throughout and leads to spatial synchronization.
Resumo:
For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.