52 resultados para Spatial dynamic modeling
Resumo:
Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.
Resumo:
Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.
Resumo:
A comparative molecular field analysis (CoMFA) of alkanoic acid 3-oxo-cyclohex-1-enyl ester and 2-acylcyclohexane-1,3-dione derivatives of 4-hydroxyphenylpyruvate dioxygenase inhibitors has been performed to determine the factors required for the activity of these compounds. The substrate's conformation abstracted from dynamic modeling of the enzyme-substrate complex was used to build the initial structures of the inhibitors. Satisfactory results were obtained after an all-space searching procedure, performing a leave-one out (LOO) cross-validation study with cross-validation q(2) and conventional r(2) values of 0.779 and 0.989, respectively. The results provide the tools for predicting the affinity of related compounds, and for guiding the design and synthesis of new HPPD ligands with predetermined affinities.
Resumo:
We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR: LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.
Resumo:
Models of ground source heat pump (GSHP) systems are used as an aid for the correct design and optimization of the system. For this purpose, it is necessary to develop models which correctly reproduce the dynamic thermal behavior of each component in a short-term basis. Since the borehole heat exchanger (BHE) is one of the main components, special attention should be paid to ensuring a good accuracy on the prediction of the short-term response of the boreholes. The BHE models found in literature which are suitable for short-term simulations usually present high computational costs. In this work, a novel TRNSYS type implementing a borehole-to-ground (B2G) model, developed for modeling the short-term dynamic performance of a BHE with low computational cost, is presented. The model has been validated against experimental data from a GSHP system located at Universitat Politècnica de València, Spain. Validation results show the ability of the model to reproduce the short-term behavior of the borehole, both for a step-test and under normal operating conditions.
Resumo:
The work in this paper is of particular significance since it considers the problem of modelling cross- and auto-correlation in statistical process monitoring. The presence of both types of correlation can lead to fault insensitivity or false alarms, although in published literature to date, only autocorrelation has been broadly considered. The proposed method, which uses a Kalman innovation model, effectively removes both correlations. The paper (and Part 2 [2]) has emerged from work supported by EPSRC grant GR/S84354/01 and is of direct relevance to problems in several application areas including chemical, electrical, and mechanical process monitoring.
Resumo:
For the first time in the open literature we present a full characterization of the performance of receiver diversity for the on-body channels found in body area networks. The study involved three commonly encountered diversity combining schemes: selection combination (SC), maximal ratio combining (MRC) and equal gain combining (EGC). Measurements were conducted for both stationary and mobile user scenarios in an anechoic chamber and open office area environment. Achievable diversity gain for various on-body dual branch diversity receivers, consisting of horizontal and vertical spatially separated antennas, was found to be dependent upon transmitter-receive array separation, user state and level of multipath contribution from the local environment. The maximum diversity gain (6.4 dB) was observed for a horizontal two branch MRC combiner while the transmitter and receiver were on opposite sides of the body, and the user was mobile in the open office area. A novel statistical characterization of the fading experienced in on-body diversity channels is also performed using purposely derived first and second order diversity statistics for combiners operating in Nakagami fading.
Resumo:
Melt viscosity is a key indicator of product quality in polymer extrusion processes. However, real time monitoring and control of viscosity is difficult to achieve. In this article, a novel “soft sensor” approach based on dynamic gray-box modeling is proposed. The soft sensor involves a nonlinear finite impulse response model with adaptable linear parameters for real-time prediction of the melt viscosity based on the process inputs; the model output is then used as an input of a model with a simple-fixed structure to predict the barrel pressure which can be measured online. Finally, the predicted pressure is compared to the measured value and the corresponding error is used as a feedback signal to correct the viscosity estimate. This novel feedback structure enables the online adaptability of the viscosity model in response to modeling errors and disturbances, hence producing a reliable viscosity estimate. The experimental results on different material/die/extruder confirm the effectiveness of the proposed “soft sensor” method based on dynamic gray-box modeling for real-time monitoring and control of polymer extrusion processes. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers
Resumo:
This paper is concerned with the finite element simulation of debonding failures in FRP-strengthened concrete beams. A key challenge for such simulations is that common solution techniques such as the Newton-Raphson method and the arc-length method often fail to converge. This paper examines the effectiveness of using a dynamic analysis approach in such FE simulations, in which debonding failure is treated as a dynamic problem and solved using an appropriate time integration method. Numerical results are presented to show that an appropriate dynamic approach effectively overcomes the convergence problem and provides accurate predictions of test results.