63 resultados para Smart City, monitoraggio ambientale, Particolato, Smart sensor, Sistemi embedded


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.

DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.

CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research presents a fast algorithm for projected support vector machines (PSVM) by selecting a basis vector set (BVS) for the kernel-induced feature space, the training points are projected onto the subspace spanned by the selected BVS. A standard linear support vector machine (SVM) is then produced in the subspace with the projected training points. As the dimension of the subspace is determined by the size of the selected basis vector set, the size of the produced SVM expansion can be specified. A two-stage algorithm is derived which selects and refines the basis vector set achieving a locally optimal model. The model expansion coefficients and bias are updated recursively for increase and decrease in the basis set and support vector set. The condition for a point to be classed as outside the current basis vector and selected as a new basis vector is derived and embedded in the recursive procedure. This guarantees the linear independence of the produced basis set. The proposed algorithm is tested and compared with an existing sparse primal SVM (SpSVM) and a standard SVM (LibSVM) on seven public benchmark classification problems. Our new algorithm is designed for use in the application area of human activity recognition using smart devices and embedded sensors where their sometimes limited memory and processing resources must be exploited to the full and the more robust and accurate the classification the more satisfied the user. Experimental results demonstrate the effectiveness and efficiency of the proposed algorithm. This work builds upon a previously published algorithm specifically created for activity recognition within mobile applications for the EU Haptimap project [1]. The algorithms detailed in this paper are more memory and resource efficient making them suitable for use with bigger data sets and more easily trained SVMs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new methodology for characterising the energy performance of buildings suitable for city-scale, top-down energy modelling. Building properties that have the greatest impact on simulated energy performance were identified via a review of sensitivity analysis studies. The methodology greatly simplifies the description of a building to decrease labour and simulation processing overheads. The methodology will be used in the EU FP7 INDICATE project which aims to create a master-planning tool that uses dynamic simulation to facilitate the design of sustainable, energy efficient smart cities.

Relevância:

50.00% 50.00%

Publicador:

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a framework for a telecommunications interface which allows data from sensors embedded in Smart Grid applications to reliably archive data in an appropriate time-series database. The challenge in doing so is two-fold, firstly the various formats in which sensor data is represented, secondly the problems of telecoms reliability. A prototype of the authors' framework is detailed which showcases the main features of the framework in a case study featuring Phasor Measurement Units (PMU) as the application. Useful analysis of PMU data is achieved whenever data from multiple locations can be compared on a common time axis. The prototype developed highlights its reliability, extensibility and adoptability; features which are largely deferred from industry standards for data representation to proprietary database solutions. The open source framework presented provides link reliability for any type of Smart Grid sensor and is interoperable with existing proprietary database systems, and open database systems. The features of the authors' framework allow for researchers and developers to focus on the core of their real-time or historical analysis applications, rather than having to spend time interfacing with complex protocols.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.