24 resultados para Single-phase inverters
Resumo:
Single-phase microreactors and micro-heat-exchangers have been widely used in industrial and scientific applications over the last decade. In several cases, operation of microreactors has shown that their expected efficiency cannot be reached either due to non-uniform distribution of reactants between different channels or due to flow maldistribution between individual microreactors working in parallel. The latter problem can result in substantial temperature deviations between different microreactors resulting in thermal run away which could arise from an exothermicreaction. Thus advances in the understanding of heat transfer and fluid flow distribution continue to be crucial in achieving improved performance, efficiency and safety in microstructured reactors used for different applications. This paper presents a review of the experimental and numerical results on fluid flow distribution, heat transfer and combination thereof, available in the open literature. Heat transfer in microchannels can be suitably described by standard theory and correlations, but scaling effects (entrance effects, conjugate heat transfer, viscous heating, and temperature-dependent properties) have often to be accounted for in microsystems. Experiments with single channels are in good agreement with predictions from the published correlations. The accuracy of multichannel experiments is lower due to flow maldistribution. Special attention is devoted to theoretical and experimental studies on the effect of a flow maldistribution on the thermal and conversion response of catalytic microreactors. There view concludes with a set of design recommendations aimed at improving the reactor performance. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We describe extensive studies on a family of perovskite oxides that are ferroelectric and ferromagnetic at ambient temperatures. The data include x-ray diffraction, Raman spectroscopy, measurements of ferroelectric and magnetic hysteresis, dielectric constants, Curie temperatures, electron microscopy
(both scanning electron microscope and transmission electron microscopy (TEM)) studies, and both longitudinal and transverse magnetoelectric constants a33 and a31. The study extends earlier work to lower Fe, Ta, and Nb concentrations at the B-site (from 15%–20% down to 5%). The magnetoelectric
constants increase supralinearly with Fe concentrations, supporting the earlier conclusions of a key role for Fe spin clustering. The room-temperature orthorhombic C2v point group symmetry inferred from earlier x-ray diffraction studies is confirmed via TEM, and the primitive unit cell size is found to be the basic perovskite Z¼1 structure of BaTiO3, also the sequence of phase transitions with increasing temperature from rhombohedral to orthorhombic to tetragonal to cubic mimics barium titanate.
Resumo:
A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.
Resumo:
A hydrodynamic characterization of an industrially used gas-liquid contacting microchannel. device is discussed, viz. the micro bubble column of IMM. Furthermore, similar characterization of a gas-liquid flow microchip of TU/e, with two tailored mixer designs, is used to solve fundamental issues on hydrodynamics, and therefore, to achieve further design and operating optimization of that chip and the IMM device. Flow pattern maps are presented in a dimensionless fashion for further predictions on new fluidic systems for optimum single-channel multiphase operation. Bubble formation was investigated in the two types of mixers and pinch-off and hydrodynamic decay mechanisms are observed. The impact of these mechanisms on bubble size, bubble size distributions, and on the corresponding flow patterns, i.e., the type of mixer design, can be decisive for the flow pattern map and thus, may be used to alter flow pattern maps. The bubble sizes and their distribution were improved for the tailored designs, i.e., smaller and more regular bubbles were generated. Finally, the impact of multi-channel distribution for gas and liquid flow is demonstrated. Intermediate flow patterns such as slug-annular flow, also found for single-phase operation, and the simultaneous coexistence of flow regimes are presented, with the latter providing evidence of flow maldistribution.
Resumo:
The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200µm and 270µm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420kgm and 0.041kgms, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065-214.9cmh and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data. © 2013 Elsevier Ltd.
Resumo:
In this work, density functional theory calculations have been performed to study the geometric, electronic, and energetic properties of two-phase TiO2 composites built by joining two single-phase TiO2 slabs, aiming at verifying possible improvement of the photo-activities of the composites through phase separation of excitons. We find that such desired electronic properties can be determined by several factors. When both the HOMO and LUMO levels of one of the two single-phase TiO2 slabs are higher than the corresponding ones of the other, the composite may have native electronic structures with phase-separated HOMO-LUMO states, especially when the two slabs exhibit highly matched surface lattices. For those pairs of TiO2 slabs with the HOMO and LUMO levels of one phase being within the range of those of the other, though the energetically favored composite give HOMO-LUMO states within one phase, one may still be able to separate them and move the HOMO state to the interface region by destabilizing the interactions between the two slabs.
Resumo:
The prediction of the pressure drop for turbulent single-phase fluid flow around sharp 90° bends is difficult owing to the complexity of the flow arising from frictional and separation effects. Several empirical equations exist, which accurately predict the pressure loss due to frictional effects. More recently, Crawford et al. [1] proposed an equation for the prediction of pressure loss due to separation of the flow. This work proposes a new composite equation for the prediction of pressure drop due to separation of the flow, which incorporates bends with ratio R/r <2. A new composite equation is proposed to predict pressure losses over the Reynolds number range 4 x 103-3 x 105. The predictions from the new equation are within a range of -4 to +6 per cent of existing experimental data.
Resumo:
The core structure of <110] superdislocations in L10 TiAl was investigated with a view to clarifying their dissociation abilities and the mechanisms by which they may become sessile by self-locking. A detailed knowledge of the fine structure of dislocations is essential in analysing the origin of the various deformation features. Atomistic simulation of the core structure and glide of the screw <110] superdislocation was carried out using a bond order potential for ?-TiAl. The core structure of the screw <110] superdislocation was examined, starting with initial unrelaxed configurations corresponding to various dislocation dissociations discussed in the literature. The superdislocation was found to possess in the screw orientation either planar (glissile) or non-planar (sessile) core structures. The response of the core configurations to externally applied shear stress was studied. Some implications were considered of the dissociated configurations and their response to externally applied stress on dislocation dynamics, including the issue of dislocation decomposition, the mechanism of locking and the orientation dependence of the dislocation substructure observed in single-phase ?-TiAl. An unexpectedly rich and complex set of candidate core structures, both planar and non-planar, was found, the cores of which may transform under applied stress with consequent violation of Schmid's law.
Resumo:
Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethyl-sulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with water at elevated temperatures. Phase separation occurs upon cooling. This thermomorphic behavior has been investigated by H-1 NMR, and it was found that it can be attributed to the temperature-dependent hydration and hydrogen-bond formation of the ionic liquid components. The crystal structures of four ionic liquids and five metal complexes have been determined.
Resumo:
The aim of this study was to investigate the solubility of mefenamic acid (MA), a highly cohesive, poorly water-soluble drug in a copolymer of polyoxyethylene–polyoxypropylene (Lutrol F681), and to understand the effect drug polymer solubility has on in vitro dissolution of MA. Solid dispersions (SD) of MA were prepared by a hot melt method, using Lutrol F681 as a thermoplastic polymeric platform. High-speed differential scanning calorimetry (Hyper-DSC), Raman spectroscopy, powder X-ray diffractometry (PXRD) and hot-stage/?uorescence microscopy were used to assess the solubility of the drug in molten and solid polymer. Drug dissolution studies were subsequently conducted on single-phase solid solutions and biphasic SD using phosphate buffer pH 6.8 as dissolution media. Solubility investigations using Hyper-DSC, Raman spectroscopy and hot-stage microscopy suggested MA was soluble in molten Lutrol F681 up to a concentration of 35% (w/w). Conversely, the solubility in the solidstate matrix was limited to<15% (w/w); determined by Raman spectroscopy, PXRD and ?uorescence microscopy. As expected the dissolution properties of MA were signi?cantly in?uenced by the solubility of the drug in the polymer matrix. At a concentration of 10% (w/w) MA (a single phase solid solution) dissolution of MA in phosphate buffer 6.8 was rapid, whereas at a concentration of 50% (w/w) MA (biphasic SD) dissolution was signi?cantly slower. This study has clearly demonstrated the complexity of drug– polymer binary blends and in particular de?ning the solubility of a drug within a polymeric platform. Moreover, this investigation has demonstrated the signi?cant effect drug solubility within a polymeric matrix has upon the in vitro dissolution properties of solid polymer/drug binary blends.
Resumo:
Joule heat-induced hot-spot formation sets severe limits in the operation of continuous annular electrochromatography (CAEC), a new concept for preparative separation as an analog to analytical capillary electrochromatography (CEC). This may lead to eluent flow perturbance, even to boiling, which would massively weaken separation efficiency and may even hamper the stationary phase used for separation. For reasons of system integration and high-efficiency heat transfer, micro flow heat exchangers are considered with a separate coolant flow. A 3D numerical analysis of the heat transfer of water single-phase laminar flow in a square microchannel and different arrays of micro pin-fins was carried out using COMSOL Multiphysics. Several advanced materials with low electric conductivity and at the same time with high heat conductivity were put forward to be used in the CAEC system. As essential design point, it is proposed to constitute the micro heat exchanger from two different parts of the CAEC system, namely a microstructured pin-fins plate and a so-called conductive plate.
Resumo:
A novel route involving atmospheric pressure chemical vapour deposition (APCVD) is reported for coating Nb2O5 onto glass substrates via the reaction of NbCl5 and ethyl acetate at 400-660degreesC. Raman spectroscopy is shown to be a simple diagnostic tool for the analysis of these thin films. The contact angle of water on Nb2O5-coated glass drops on UV irradiation from 60degrees to 5-20degrees. XPS Analysis showed that the Nb:O ratio of the film was 1:2.5. Glancing angle X-ray diffraction showed that all films were crystalline, with only a single phase being observed; this has some preferred orientation in the (201) plane of Nb2O5. The niobium(V) oxide materials show minimal photocatalytic ability to degrade organic material.
Resumo:
Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass substrates was achieved by the reaction of TiCl4 and a co-oxygen source (MeOH, EtOH, (PrOH)-Pr-i or H2O) at 500-650degreesC. The coatings show excellent uniformity, surface coverage and adherence. Growth rates were of the order of 0.3 mum min(-1) at 500degreesC. All films are crystalline and single phase with XRD showing the anatase TiO2 diffraction pattern; a = 3.78(1), c = 9.51(1) Angstrom. Optically, the films show minimal reflectivity from 300-1600 nm and 50-80% total transmission from 300-800 nm. Contact angles are in the range 20-40degrees for as-prepared films and 1-10degrees after 30 min irradiation at 254 nm. All of the films show significant photocatalyic activity as regards the destruction of an overlayer of stearic acid.