73 resultados para Set of Weak Stationary Dynamic Actions
Resumo:
Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.
Resumo:
This study reports the isolation and polymorphism characterization of four plastid indels and six nuclear microsatellite loci in the invasive plant Heracleum mantegazzianum. These markers were tested in 27 individuals from two distant H. mantegazzianum populations. Plastid indels revealed the presence of five chlorotypes while five nuclear microsatellite loci rendered polymorphism. Applications of these markers include population genetics and phylogeography of H. mantegazzianum. A very good transferability of markers to Heracleum sphondylium was demonstrated.
Resumo:
When attempting to quantify the volatile components of a food isolated by dynamic headspace trapping onto an adsorbent, the analyst has to select the most appropriate compounds to use as standards and at which stage of the analysis to add them. Factors to be borne in mind include the volatility of the standard, the response of the GC detector, and whether to add the standard to the sample or to the adsorbent trap. This chapter considers the issues and describes the application of one chosen method to the quantitation of the volatile components of baked potato.
Resumo:
Let X be a quasi-compact scheme, equipped with an open covering by affine schemes U s = Spec A s . A quasi-coherent sheaf on X gives rise, by taking sections over the U s , to a diagram of modules over the coordinate rings A s , indexed by the intersection poset S of the covering. If X is a regular toric scheme over an arbitrary commutative ring, we prove that the unbounded derived category of quasi-coherent sheaves on X can be obtained from a category of Sop-diagrams of chain complexes of modules by inverting maps which induce homology isomorphisms on hyper-derived inverse limits. Moreover, we show that there is a finite set of weak generators, one for each cone in the fan S. The approach taken uses the machinery of Bousfield–Hirschhorn colocalisation of model categories. The first step is to characterise colocal objects; these turn out to be homotopy sheaves in the sense that chain complexes over different open sets U s agree on intersections up to quasi-isomorphism. In a second step it is shown that the homotopy category of homotopy sheaves is equivalent to the derived category of X.
Resumo:
Let D be the differentiation operator Df = f' acting on the Fréchet space H of all entire functions in one variable with the standard (compact-open) topology. It is known since the 1950’s that the set H(D) of hypercyclic vectors for the operator D is non-empty. We treat two questions raised by Aron, Conejero, Peris and Seoane-Sepúlveda whether the set H(D) contains (up to the zero function) a non-trivial subalgebra of H or an infinite-dimensional closed linear subspace of H. In the present article both questions are answered affirmatively.
Resumo:
A stationary phase model is used to study supercritical waves generated by high speed ferries. Some general relationships in terms of wave angle, propagation direction, dispersion relationship and depth wavelength relationship are explored and discussed. In particular, it is shown that the wave pattern generated by high speed craft at supercritical speeds depends mainly on the relationship of water depth and ship speed and that the wave patterns are similar in terms of location of crests and troughs for a given depth Froude number. In addition it is found that the far field wave pattern can be described adequately using a single moving point source. The theoretical model compares well with towing tank measurements and full scale data over a range of parameters and hull shapes. The paper also demonstrates that the far field wave pattern at supercritical speeds should be non-dimensionalised by water depth and not hull length unlike it is usually done for subcritical speeds.
Resumo:
Crystallisation of the square-planar complex trans-Pt{PPh2(C16H15)}(2)Cl-2 from dichloromethane-diethyl ether (1:1) affords two different solvates; trans-Pt{PPh2(C16H15)}(2)Cl-2. CH2Cl2 1 and trans-Pt{PPh2(C16H15)}(2)Cl-2. Et2O 2; the CH2Cl2 forms H-bonding interactions with the complex whereas the Et2O participates only in weak van der Waals interactions; these differences arise from the different hydrogen-bonding characteristics of each solvent.
Resumo:
Motivation: We study a stochastic method for approximating the set of local minima in partial RNA folding landscapes associated with a bounded-distance neighbourhood of folding conformations. The conformations are limited to RNA secondary structures without pseudoknots. The method aims at exploring partial energy landscapes pL induced by folding simulations and their underlying neighbourhood relations. It combines an approximation of the number of local optima devised by Garnier and Kallel (2002) with a run-time estimation for identifying sets of local optima established by Reeves and Eremeev (2004).
Results: The method is tested on nine sequences of length between 50 nt and 400 nt, which allows us to compare the results with data generated by RNAsubopt and subsequent barrier tree calculations. On the nine sequences, the method captures on average 92% of local minima with settings designed for a target of 95%. The run-time of the heuristic can be estimated by O(n2D?ln?), where n is the sequence length, ? is the number of local minima in the partial landscape pL under consideration and D is the maximum number of steepest descent steps in attraction basins associated with pL.
Resumo:
Through the use of time-integrated space-resolved keV spectroscopy, we characterize line plasmas showing gain in Ne-like Zn with prepulsed irradiation to explain the enhanced performances of x-ray lasers using the prepulse technique. It is observed that the value of the electron temperature does not vary significantly with prepulse level, nor does its spatially resolved profile along the line. The lateral width and density of the Ne-like region in the plasma are seen to increase with the prepulse level. (C) 1995 Optical Society of America