14 resultados para Sequent Calculus
Resumo:
Incidence calculus is a mechanism for probabilistic reasoning in which sets of possible worlds, called incidences, are associated with axioms, and probabilities are then associated with these sets. Inference rules are used to deduce bounds on the incidence of formulae which are not axioms, and bounds for the probability of such a formula can then be obtained. In practice an assignment of probabilities directly to axioms may be given, and it is then necessary to find an assignment of incidence which will reproduce these probabilities. We show that this task of assigning incidences can be viewed as a tree searching problem, and two techniques for performing this research are discussed. One of these is a new proposal involving a depth first search, while the other incorporates a random element. A Prolog implementation of these methods has been developed. The two approaches are compared for efficiency and the significance of their results are discussed. Finally we discuss a new proposal for applying techniques from linear programming to incidence calculus.
Resumo:
Dealing with uncertainty problems in intelligent systems has attracted a lot of attention in the AI community. Quite a few techniques have been proposed. Among them, the Dempster-Shafer theory of evidence (DS theory) has been widely appreciated. In DS theory, Dempster's combination rule plays a major role. However, it has been pointed out that the application domains of the rule are rather limited and the application of the theory sometimes gives unexpected results. We have previously explored the problem with Dempster's combination rule and proposed an alternative combination mechanism in generalized incidence calculus. In this paper we give a comprehensive comparison between generalized incidence calculus and the Dempster-Shafer theory of evidence. We first prove that these two theories have the same ability in representing evidence and combining DS-independent evidence. We then show that the new approach can deal with some dependent situations while Dempster's combination rule cannot. Various examples in the paper show the ways of using generalized incidence calculus in expert systems.
Resumo:
This paper discusses the relations between extended incidence calculus and assumption-based truth maintenance systems (ATMSs). We first prove that managing labels for statements (nodes) in an ATMS is equivalent to producing incidence sets of these statements in extended incidence calculus. We then demonstrate that the justification set for a node is functionally equivalent to the implication relation set for the same node in extended incidence calculus. As a consequence, extended incidence calculus can provide justifications for an ATMS, because implication relation sets are discovered by the system automatically. We also show that extended incidence calculus provides a theoretical basis for constructing a probabilistic ATMS by associating proper probability distributions on assumptions. In this way, we can not only produce labels for all nodes in the system, but also calculate the probability of any of such nodes in it. The nogood environments can also be obtained automatically. Therefore, extended incidence calculus and the ATMS are equivalent in carrying out inferences at both the symbolic level and the numerical level. This extends a result due to Laskey and Lehner.
Resumo:
We restate the notion of orthogonal calculus in terms of model categories. This provides a cleaner set of results and makes the role of O(n)-equivariance clearer. Thus we develop model structures for the category of n-polynomial and n-homogeneous functors, along with Quillen pairs relating them. We then classify n-homogeneous functors, via a zig-zag of Quillen equivalences, in terms of spectra with an O(n)-action. This improves upon the classification theorem of Weiss. As an application, we develop a variant of orthogonal calculus by replacing topological spaces with orthogonal spectra.
Resumo:
Situation calculus has been applied widely in arti?cial intelligence to model and reason about actions and changes in dynamic systems. Since actions carried out by agents will cause constant changes of the agents’ beliefs, how to manage
these changes is a very important issue. Shapiro et al. [22] is one of the studies that considered this issue. However, in this framework, the problem of noisy sensing, which often presents in real-world applications, is not considered. As a
consequence, noisy sensing actions in this framework will lead to an agent facing inconsistent situation and subsequently the agent cannot proceed further. In this paper, we investigate how noisy sensing actions can be handled in iterated
belief change within the situation calculus formalism. We extend the framework proposed in [22] with the capability of managing noisy sensings. We demonstrate that an agent can still detect the actual situation when the ratio of noisy sensing actions vs. accurate sensing actions is limited. We prove that our framework subsumes the iterated belief change strategy in [22] when all sensing actions are accurate. Furthermore, we prove that our framework can adequately handle belief introspection, mistaken beliefs, belief revision and belief update even with noisy sensing, as done in [22] with accurate sensing actions only.
Resumo:
Abstract In the theory of central simple algebras, often we are dealing with abelian groups which arise from the kernel or co-kernel of functors which respect transfer maps (for example K-functors). Since a central simple algebra splits and the functors above are “trivial” in the split case, one can prove certain calculus on these functors. The common examples are kernel or co-kernel of the maps Ki(F)?Ki(D), where Ki are Quillen K-groups, D is a division algebra and F its center, or the homotopy fiber arising from the long exact sequence of above map, or the reduced Whitehead group SK1. In this note we introduce an abstract functor over the category of Azumaya algebras which covers all the functors mentioned above and prove the usual calculus for it. This, for example, immediately shows that K-theory of an Azumaya algebra over a local ring is “almost” the same as K-theory of the base ring. The main result is to prove that reduced K-theory of an Azumaya algebra over a Henselian ring coincides with reduced K-theory of its residue central simple algebra. The note ends with some calculation trying to determine the homotopy fibers mentioned above.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
The Organisation for Economic Co-operation and Development investigated numeracy proficiency among adults of working age in 23 countries across the world. Finland had the highest mean numeracy proficiency for people in the 16 – 24 age group while Northern Ireland’s score was below the mean for all the countries. An international collaboration has been undertaken to investigate the prevalence of mathematics within the secondary education systems in Northern Ireland and Finland, to highlight particular issues associated with transition into university and consider whether aspects of the Finnish experience are applicable elsewhere. In both Northern Ireland and Finland, at age 16, about half of school students continue into upper secondary level following their compulsory education. The upper secondary curriculum in Northern Ireland involves a focus on three subjects while Finnish students study a very wide range of subjects with about two-thirds of the courses being compulsory. The number of compulsory courses in maths is proportionally large; this means that all upper secondary pupils in Finland (about 55% of the population) follow a curriculum which has a formal maths content of 8%, at the very minimum. In contrast, recent data have indicated that only about 13% of Northern Ireland school leavers studied mathematics in upper secondary school. The compulsory courses of the advanced maths syllabus in Finland are largely composed of pure maths with a small amount of statistics but no mechanics. They lack some topics (for example, in advanced calculus and numerical methods for integration) which are core in Northern Ireland. This is not surprising given the much broader curriculum within upper secondary education in Finland. In both countries, there is a wide variation in the mathematical skills of school leavers. However, given the prevalence of maths within upper secondary education in Finland, it is to be expected that young adults in that country demonstrate high numeracy proficiency.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
We undertake a detailed study of the sets of multiplicity in a second countable locally compact group G and their operator versions. We establish a symbolic calculus for normal completely bounded maps from the space B(L-2(G)) of bounded linear operators on L-2 (G) into the von Neumann algebra VN(G) of G and use it to show that a closed subset E subset of G is a set of multiplicity if and only if the set E* = {(s,t) is an element of G x G : ts(-1) is an element of E} is a set of operator multiplicity. Analogous results are established for M-1-sets and M-0-sets. We show that the property of being a set of multiplicity is preserved under various operations, including taking direct products, and establish an Inverse Image Theorem for such sets. We characterise the sets of finite width that are also sets of operator multiplicity, and show that every compact operator supported on a set of finite width can be approximated by sums of rank one operators supported on the same set. We show that, if G satisfies a mild approximation condition, pointwise multiplication by a given measurable function psi : G -> C defines a closable multiplier on the reduced C*-algebra G(r)*(G) of G if and only if Schur multiplication by the function N(psi): G x G -> C, given by N(psi)(s, t) = psi(ts(-1)), is a closable operator when viewed as a densely defined linear map on the space of compact operators on L-2(G). Similar results are obtained for multipliers on VN(C).
Resumo:
Recent work of Biedermann and Roendigs has translated Goodwillie's calculus of functors into the language of model categories. Their work focuses on symmetric multilinear functors and the derivative appears only briefly. In this paper we focus on understanding the derivative as a right Quillen functor to a new model category. This is directly analogous to the behaviour of Weiss's derivative in orthogonal calculus. The immediate advantage of this new category is that we obtain a streamlined and more informative proof that the n-homogeneous functors are classified by spectra with an action of the symmetric group on n objects. In a later paper we will use this new model category to give a formal comparison between the orthogonal calculus and Goodwillie's calculus of functors.
Resumo:
Demand for intelligent surveillance in public transport systems is growing due to the increased threats of terrorist attack, vandalism and litigation. The aim of intelligent surveillance is in-time reaction to information received from various monitoring devices, especially CCTV systems. However, video analytic algorithms can only provide static assertions, whilst in reality, many related events happen in sequence and hence should be modeled sequentially. Moreover, analytic algorithms are error-prone, hence how to correct the sequential analytic results based on new evidence (external information or later sensing discovery) becomes an interesting issue. In this paper, we introduce a high-level sequential observation modeling framework which can support revision and update on new evidence. This framework adapts the situation calculus to deal with uncertainty from analytic results. The output of the framework can serve as a foundation for event composition. We demonstrate the significance and usefulness of our framework with a case study of a bus surveillance project.