18 resultados para Semi-solid state
Resumo:
Conventional differential scanning calorimetry (DSC) techniques are commonly used to quantify the solubility of drugs within polymeric-controlled delivery systems. However, the nature of the DSC experiment, and in particular the relatively slow heating rates employed, limit its use to the measurement of drug solubility at the drug's melting temperature. Here, we describe the application of hyper-DSC (HDSC), a variant of DSC involving extremely rapid heating rates, to the calculation of the solubility of a model drug, metronidazole, in silicone elastomer, and demonstrate that the faster heating rates permit the solubility to be calculated under non-equilibrium conditions such that the solubility better approximates that at the temperature of use. At a heating rate of 400 degrees C/min (HDSC), metronidazole solubility was calculated to be 2.16 mg/g compared with 6.16 mg/g at 20 degrees C/min. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose. This study examined the mechanical characteristics and release of tetracycline from bioadhesive, semi-solid systems which were designed for the treatment of periodontal diseases.
Resumo:
Using neutron and single crystal X-ray diffraction the structures of 1,3-dimethylimidazolim chloride and hexafluorophosphate salts have been determined in the liquid and the solid-state. The relative hydrogen bonding characteristics and sizes of the two anions force the ions to pack differently. In each case, a strong correlation between the crystal structure and liquid structure is found.
Resumo:
Solid-state NMR and TEM were used to quantitatively examine the evolution of clay morphology upon equibiaxial stretching of polypropylene/montmorillonite (PP-MMT) nanocomposites up to a stretch ratio (?= final length/initial length) of 3.5. 1 H spin-lattice relaxation times were measured by the saturation-recovery sequence. For the nanocomposites, initial portions of the magnetization recovery
curves (e~20 ms) were found to depend on v t, indicative of diffusion-limited relaxation and in agreement with calculations based on estimates of the spin-diffusion barrier radius surrounding the paramagnetic centers in the clay, the electron-nucleus coupling constant, and the spin-diffusion coefficient. Initial slopes of these magnetization recovery curves directly correlated with the fraction of clay/polymer interface. New clay surface was exposed as a near linear function of strain. Long-time portions of the magnetization recovery curves yielded information on the average interparticle separations, which decreased slowly before reaching a plateau at ?=~2.5 as particles aligned. TEM images supported these findings and were used to define and quantify degrees of exfoliation and homogeneity from the NMR data. Exfoliation, defined as (platelets/ stack)-1, increased from 0.38 (unstretched) to 0.80 at ? = 3.5 for PP-MMT nanocomposites stretched at
150 C and 16 s-1. A lower stretch temperature, 145 C, which is slightly below melting onset, led to an exfoliation degree of 0.87 at ?= 2.8, consistent with the ability of higher melt viscosities to allow for higher shear stress transfer. Exposure of new clay surface is attributed to aggregate breakup and orientation at low strains (? e ~2) and to platelets sliding apart at higher strains.
Resumo:
The interactions of ions in the solid state for a series of representative 1,3-dialkylimidazolium hexafluorophosphate salts (either ionic liquids or closely related) have been examined by crystallographic analysis, combined with the theoretical estimation of crystal-packing densities and lattice-interaction energies. Efficient close-packing of the ions in the crystalline states is observed, but there was no compelling evidence for specific directional hydrogen-bonding to the hexafluorophosphate anions or the formation of interstitial voids. The close-packing efficiency is supported by the theoretical calculation of ion volumes, crystal lattice energies, and packing densities, which correlated well with experimental data. The crystal density of the salts can be predicted accurately from the summation of free ion volumes and lattice energies calculated. Of even more importance for future work, on these and related salts, the solid-state density of 1,3-dialkylimidazolium hexafluorophosphate salts can be predicted with reasonable accuracy purely on the basis of on ab initio free ion volumes, and this allows prediction of lattice energies without necessarily requiring the crystal structures.
Resumo:
The new platinum complex [PtCl[C6H2(CH(2)NMe(2))(2) -2,6-(C=CH)-4)] exhibits a polymeric linear -C=CH ... ClPt-hydrogen-bonded structure in the solid state.
Resumo:
We present searches for gas-phase CO2 features in the ISO-SWS infrared spectra of four deeply embedded massive young stars, which all show strong solid CO2 absorption. The abundance of gas-phase CO2 is at most 2. 10(-7) with respect to H-2, and is less than 5% of that in the solid phase. This is in strong contrast to CO, which is a factor of 10-100 more abundant in the gas than in solid form in these objects. The gas/solid state ratios of CO2, CO and H2O are discussed in terms of the physical and chemical state of the clouds.
Resumo:
The spray-congealing technique, a solvent-free drug encapsulation process, was successfully employed to obtain lipid-based particulate systems with high (10–20% w/w) protein loading. Bovine serum albumin (BSA) was utilised as model protein and three low melting lipids (glyceryl palmitostearate, trimirystin and tristearin) were employed as carriers. BSA-loaded lipid microparticles were characterised in terms of particle size, morphology and drug loading. The results showed that the microparticles exhibited a spherical shape, mean diameter in the range 150–300 µm and an encapsulation efficiency higher than 90%. Possible changes in the protein structure as a result of the manufacturing process was then investigated for the first time using UV spectrophotometry in fourth derivative mode and FT-Raman spectroscopy. The results suggested that the structural integrity of the protein was maintained within the particles. Thermal analysis indicated that the effect of protein on the thermal properties of the carriers could be detected. Spray-congealing could thus be considered a suitable technique to produce highly BSA-loaded microparticles preserving the structure of the protein.
Resumo:
The potentiometric and AC impedance characteristics of all solid-state sodium-selective electrodes based on planar screen-printed Ag/AgCl electrodes are described. Two solid-state designs have been investigated. The first was based on the deposition of a sodium-selective PVC membrane directly on top of a screen-printed Ag/AgCl electrode, The second design included a NaCl doped hydrogel layer, between the PVC and Ag\AgCl layers. The hydrogel provides a mechanism to relieve any blockage to charge transfer occurring when PVC membranes are used directly on top of Ag/AgCl and also improves adhesion between the two layers. Results suggest the electrodes display Fast ion exchange kinetics, low noise and drift. The performance compares favorably to that of a conventional ion-selective electrode with internal filling solution.
Resumo:
The solid-state polymorphism of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], has been investigated via low-temperature and high-pressure crystallisation experiments. The samples have been characterised by single-crystal X-ray diffraction, optical microscopy and Raman spectroscopy. The solid-state phase behaviour of the compound is confirmed and clarified with respect to previous phase diagrams. The structures of the previously reported gamma-form, which essentially exhibits a G'T cation conformation, as well as those of the elusive beta- and alpha-forms, are reported. Crystals of the beta-phase are twinned and the structure is heavily disordered; the cation conformation in this form is predominantly TT, though significant contributions from other less frequently encountered conformers are also observed at low temperature and high pressure. The cation conformation in the alpha-form is GT; the presence of the G'T conformer at 193 K in this phase can be eliminated on cooling to 100 K. Whilst X-ray structural data are overall in good agreement with previous interpretations based on Raman and NMR studies, they also reveal a more subtle interplay of intermolecular interactions, which give rise to a wider range of conformers than previously considered.
Resumo:
The dimensions and cavity sizes of the molecular capsules with the general formula [V10O18L4]10− can be controlled modularly through the nature of the bifunctional, rigid organophosphonate ligands L1 and L2 (L1 = bis(4-phosphonatophenyl)ethyne and L2 = bis(4-phosphonatophenyl)butadiyne); the solution stability of the molecular entities as demonstrated by ESI-MS studies permits their assembly on the Au(111) surface on a sub-monolayer scale giving rise to a 2D supramolecular structure that is comparable to the packing arrangements of the capsules in the crystal structures.
Resumo:
Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD.