19 resultados para SINGULAR PERTURBATION
Resumo:
Goldstone's idea of slow dynamics resulting from spontaneously broken symmetries is applied to Hubbell's neutral hypothesis of community dynamics, to efficiently simplify stage-structured multi-species models-introducing the quasi-neutral approximation (QNA). Rather than assuming population-dynamical neutrality in the QNA, deviations from ideal neutrality, thought to be small, drive dynamics. The QNA is systematically derived to first and second order in a two-scale singular perturbation expansion. The total reproductive value of species, as computed from the effective life-history parameters resulting from the non-linear interactions with the surrounding community, emerges as the new dynamic variables in this aggregated description. Using a simple stage-structured community-assembly model, the QNA is demonstrated to accurately reproduce population dynamics in large, complex communities. Further, the utility of the QNA in building intuition for management problems is illustrated by estimating the responses of a fish stock to harvesting and variations in fecundity.
Resumo:
Here a self-consistent one-dimensional continuum model is presented for a narrow gap plane-parallel dc glow discharge. The governing equations consist of continuity and momentum equations for positive and negative ions and electrons coupled with Poisson's equation. A singular perturbation method is developed for the analysis of high pressure dc glow discharge. The kinetic processes of the ionization, electron attachment, and ion-ion recombination are included in the model. Explicit results are obtained for the asymptotic limits: delta=(r(D)/L)(2)--> 0, omega=(r(S)/L)(2)--> 0, where r(D) is the Debye radius, r(S) is recombination length, and L is the gap length. The discharge gap divides naturally into four layers with multiple space scales: anode fall region, positive column, transitional region, cathode fall region and diffusion layer adjacent to the cathode surface, its formation is discussed. The effects of the gas pressure, gap spacing and dc voltage on the electrical properties of the layers and its dimension are investigated. (C) 2000 American Institute of Physics. [S0021-8979(00)00813-6].
Resumo:
This paper is concerned with the universal (blind) image steganalysis problem and introduces a novel method to detect especially spatial domain steganographic methods. The proposed steganalyzer models linear dependencies of image rows/columns in local neighborhoods using singular value decomposition transform and employs content independency provided by a Wiener filtering process. Experimental results show that the novel method has superior performance when compared with its counterparts in terms of spatial domain steganography. Experiments also demonstrate the reasonable ability of the method to detect discrete cosine transform-based steganography as well as the perturbation quantization method.
Resumo:
Connectivity mapping is a recently developed technique for discovering the underlying connections between different biological states based on gene-expression similarities. The sscMap method has been shown to provide enhanced sensitivity in mapping meaningful connections leading to testable biological hypotheses and in identifying drug candidates with particular pharmacological and/or toxicological properties. Challenges remain, however, as to how to prioritise the large number of discovered connections in an unbiased manner such that the success rate of any following-up investigation can be maximised. We introduce a new concept, gene-signature perturbation, which aims to test whether an identified connection is stable enough against systematic minor changes (perturbation) to the gene-signature. We applied the perturbation method to three independent datasets obtained from the GEO database: acute myeloid leukemia (AML), cervical cancer, and breast cancer treated with letrozole. We demonstrate that the perturbation approach helps to identify meaningful biological connections which suggest the most relevant candidate drugs. In the case of AML, we found that the prevalent compounds were retinoic acids and PPAR activators. For cervical cancer, our results suggested that potential drugs are likely to involve the EGFR pathway; and with the breast cancer dataset, we identified candidates that are involved in prostaglandin inhibition. Thus the gene-signature perturbation approach added real values to the whole connectivity mapping process, allowing for increased specificity in the identification of possible therapeutic candidates.
Resumo:
A unitary operator V and a rank 2 operator R acting on a Hilbert space H are constructed such that V + R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic.
Resumo:
Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.
Resumo:
We review some recent developments in many body perturbation theory (MBPT) calculations that have enabled the study of interfaces and defects. Starting from the theoretical basis of MBPT, Hedin's equations are presented, leading to the CW and CWI' approximations. We introduce the perturbative approach, that is the one most commonly used for obtaining quasiparticle (QP) energies. The practical strategy presented for dealing with the frequency dependence of the self energy operator is based on either plasmon-pole models (PPM) or the contour deformation technique, with the latter being more accurate. We also discuss the extrapolar method for reducing the number of unoccupied states which need to be included explicity in the calculations. The use of the PAW method in the framework of MBPT is also described. Finally, results which have been obtained using, MBPT for band offsets a interfaces and for defects presented, with companies on the main difficulties and cancels.
Schematic representation of the QP corrections (marked with ) to the band edges (E and E-v) and a defect level (F) for a Si/SiO2 interface (Si and O atoms are represented in blue and red, respectively, in the ball and stick model) with an oxygen vacancy leading to a Si-Si bond (the Si atoms involved in this bond are colored light blue).
Resumo:
The electronic properties of zircon and hafnon, two wide-gap high-kappa materials, are investigated using many-body perturbation theory (MBPT) combined with the Wannier interpolation technique. For both materials, the calculated band structures differ from those obtained within density-functional theory and MBPT by (i) a slight displacement of the highest valence-band maximum from the Gamma point and (ii) an opening of the indirect band gap to 7.6 and 8.0 eV for zircon and hafnon, respectively. The introduction of vertex corrections in the many-body self-energy does not modify the results except for a global rigid shift of the many-body corrections.