134 resultados para SENSORY DEVICE
Resumo:
BACKGROUND: Sensory neuropeptides have been suggested to play a role in the pathogenesis of a number of respiratory diseases including asthma and chronic non-productive cough.
OBJECTIVES: To investigate the action of sensory neuropeptides on airway mast cells obtained by bronchoalveolar lavage (BAL).
METHODS: BAL was performed on 23 nonasthmatic patients with cough (NAC), 11 patients with cough variant asthma (CVA) and 10 nonatopic controls. Washed lavage cells were stimulated (20 min, 37 degrees C) with calcitonin gene-related peptide (CGRP), neurokinin A (NKA) and substance P (25 and 50 micromol/L).
RESULTS: The neuropeptides tested induced histamine release in all groups studied. Only CGRP (50 micromol/L) induced significantly more histamine release from both NAC and CVA patients compared with control subjects (P = 0.038 and 0.045, respectively).
CONCLUSION: Regardless of aetiology, mast cells from patients with chronic cough appear to have an increased responsiveness to CGRP compared with controls. The results of the present study suggest that the role of CGRP in chronic cough should be further investigated.
Resumo:
This study presents a reproducible, cost-effective in vitro encrustation model and, furthermore, describes the effects of components of the artificial urine and the presence of agents that modify the action of urease on encrustation on commercially available ureteral stents. The encrustation model involved the use of small-volume reactors (700 mL) containing artificial urine and employing an orbital incubator (at 37 degrees C) to ensure controlled stirring. The artificial urine contained sources of calcium and magnesium (both as chlorides), albumin and urease. Alteration of the ratio (% w/w) of calcium salt to magnesium salt affected the mass of encrustation, with the greatest encrustation noted whenever magnesium was excluded from the artificial urine. Increasing the concentration of albumin, designed to mimic the presence of protein in urine, significantly decreased the mass of both calcium and magnesium encrustation until a plateau was observed. Finally, exclusion of urease from the artificial urine significantly reduced encrustation due to the indirect effects of this enzyme on pH. Inclusion of the urease inhibitor, acetohydroxamic acid, or urease substrates (methylurea or ethylurea) into the artificial medium markedly reduced encrustation on ureteral stents. In conclusion, this study has described the design of a reproducible, cost-effective in vitro encrustation model. Encrustation was markedly reduced on biomaterials by the inclusion of agents that modify the action of urease. These agents may, therefore, offer a novel clinical approach to the control of encrustation on urological medical devices. (c) 2005 Wiley Periodicals, Inc.
Resumo:
In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.
Resumo:
The conceptual design of a new electron beam ion trap primarily intended for the study of electron-ion interactions is outlined along with some preliminary predictions regarding its capabilities. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An electron beam ion trap ( EBIT) has been designed and is currently under construction for use in atomic physics experiments at the Queen's University, Belfast. In contrast to traditional EBITs where pairs of superconducting magnets are used, a pair of permanent magnets will be used to compress the electron beam. The permanent magnets have been designed in conjunction with bespoke vacuum ports to give unprecedented access for photon detection. Furthermore, the bespoke vacuum ports facillitate a versatile, reconfigurable trap structure able to accommodate various in-situ detectors and in-line charged particle analysers. Although the machine will have somewhat lower specifications than many existing EBITs in terms of beam current density, it is hoped that the unique features will facilitate a number of hitherto impossible studies involving interactions between electrons and highly charged ions. In this article the new machine's design is outlined along with some suggestions of the type of process to be studied once the construction is completed.
Resumo:
This paper provides valuable design insights for optimizing device parameters for nanoscale planar and vertical SOI MOSFETs. The suitability of nanoscale non-planar FinFETs and classical planar single and double gate SOI MOSFETs for rf applications is examined via extensive 3D device simulations and detailed interpretation. The origin of higher parasitic capacitance in FinFETs, compared to planar MOSFETs is examined. RF figures of merit for planar and vertical MOS devices are compared, based on layout-area calculations.
Resumo:
The potential of Raman spectroscopy for the determination of meat quality attributes has been investigated using data from a set of 52 cooked beef samples, which were rated by trained taste panels. The Raman spectra, shear force and cooking loss were measured and PLS used to correlate the attributes with the Raman data. Good correlations and standard errors of prediction were found when the Raman data were used to predict the panels' rating of acceptability of texture (R-2 = 0.71, Residual Mean Standard Error of Prediction (RMSEP)% of the mean (mu) = 15%), degree of tenderness (R-2 = 0.65, RMSEP% of mu = 18%), degree of juiciness (R-2 = 0.62, RMSEP% of mu = 16%), and overall acceptability (R-2 = 0.67, RMSEP% of mu = 11%). In contrast, the mechanically determined shear force was poorly correlated with tenderness (R-2 = 0.15). Tentative interpretation of the plots of the regression coefficients suggests that the alpha-helix to beta-sheet ratio of the proteins and the hydrophobicity of the myofibrillar environment are important factors contributing to the shear force, tenderness, texture and overall acceptability of the beef. In summary, this work demonstrates that Raman spectroscopy can be used to predict consumer-perceived beef quality. In part, this overall success is due to the fact that the Raman method predicts texture and tenderness, which are the predominant factors in determining overall acceptability in the Western world. Nonetheless, it is clear that Raman spectroscopy has considerable potential as a method for non-destructive and rapid determination of beef quality parameters.