15 resultados para Running Kinematics
Resumo:
We present the first detailed spatio-kinematical analysis and modelling of the southern planetary nebula SuWt 2. This object presents a problem for current theories of planetary nebula formation and evolution, as it is not known to contain a central post-main-sequence star. Deep narrow-band [NII]6584Å images reveal the presence of faint bipolar lobes emanating from the edges of the nebular ring. Long-slit observations of the Ha and [NII]6584Å emission lines were obtained using the ESO (European Southern Observatory) Multi-Mode Instrument on the 3.6-m ESO New Technology Telescope. The spectra reveal the nebular morphology as a bright torus encircling the waist of an extended bipolar structure. By deprojection, the inclination of the ring is found to be 68° +/- 2° (cf. ~90° for the double A-type binary believed to lie at the centre of the nebula), and the ring expansion velocity is found to be 28 kms-1. Our findings are discussed with relation to possible formation scenarios for SuWt 2. Through comparison of the nebular heliocentric systemic velocity, found here to be -25 +/- 5km s-1, and the heliocentric systemic velocity of the double A-type binary, we conclude that neither component of the binary could have been the nebular progenitor. However, we are unable to rule out the presence of a third component to the system, which would have been the nebula progenitor.
Resumo:
Amphibian skin secretions are established sources of bioactive peptides. Here we describe the isolation, structural and pharmacological characterisation of a novel vasoconstrictor peptide from the skin secretion of the African hyperoliid frog, Kassina maculata, which exhibits no structural similarity to any known class of amphibian skin peptide. The peptide consists of 21 amino acid residues, FIKELLPHLSGIIDSVANAIK, and is C-terminally amidated. The provisional structure was obtained by MS/MS fragmentation using an Orbitrap mass spectrometer and L/I ambiguities were resolved following molecular cloning of biosynthetic precursor-encoding cDNA. A synthetic replicate of the peptide was found to possess weak antimicrobial and haemolytic activities but was exceptionally effective in constricting the smooth muscle of rat tail artery (EC50 of 25pM). In reflection of its exceptional potency in constricting rat arterial smooth muscle, the peptide was named kasstasin, a derivation of Kassina and “stasis” (stoppage of flow). These data illustrate the continuing potential of amphibian skin secretions to provide novel natural peptide templates for biological evaluation.
Resumo:
The work presented in this paper takes advantage of newly developed instrumentation suitable for in process monitoring of an industrial stretch blow molding machine. The instrumentation provides blowing pressure and stretch rod force histories along with the kinematics of polymer contact with the mould wall. A Design of Experiments pattern was used to qualitatively relate machine inputs with these process parameters and the thickness distribution of stretch blow molded PET (polyethylene terephtalate) bottles. Material slippage at the mold wall and thickness distribution is also discussed in relation to machine inputs. The key process indicators defined have great potential for use in a closed loop process control system and for validation of process simulations.
Resumo:
Amphibian skin is a rich and unique source of novel bioactive peptides most of which are endowed with either antimicrobial or pharmacological properties. Here we report the identification and structural characterization of a novel peptide, named senegalin, which possesses both activities. Senegalin is a hexadecapeptide amide (FLPFLIPALTSLISSL-NH2) of unique primary structure found in the skin secretion of the African running frog, Kassina senegalensis. The structure of the biosynthetic precursor of senegalin, deduced from cloned skin cDNA, consists of 76 amino acid residues and displays the typical domain organization of an amphibian skin peptide precursor. Both natural senegalin and its synthetic replicate
displayed antimicrobial and myotropic activities. Senegalin was active against Staphylococcus aureus (MIC 50µM) and Candida albicans (MIC 150µM) but was nonhaemolytic at concentrations up to and including 150µM. In contrast, senegalin induced a dose-dependent contraction of rat urinary bladder smooth muscle (EC50 2.9nM) and a dosedependent relaxation of rat tail artery smooth muscle (EC50 37.7nM). Senegalin thus represents a prototype biologically-active amphibian skin peptide and illustrates the fact thatamphibian skin secretion peptidomes continue to be unique sources of such molecules.
Resumo:
We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
This pilot study presents an environmental DNA (eDNA) assay for sea lamprey Petromyzon marinus and brown trout Salmo trutta, two species of economic and conservation importance in the Republic of Ireland. The results demonstrate the effectiveness of eDNA for assessing presence of low-abundance taxa (here, P. marinus) for environmental managers, and they highlight the potential for assessing relative abundance of rare or invasive freshwater species.
Resumo:
Objectives
Barefoot running describes when individuals run without footwear. Minimalist running utilizes shoes aimed to mimic being barefoot. Although these forms of running have become increasingly popular, we still know little about how recreational runners perceive them.
Design
In-depth interviews with eight recreational runners were used to gather information about their running experiences with a focus on barefoot and minimalist running.
Methods
Interviews were analysed using a latent level thematic analysis to identify and interpret themes within the data.
Results
Although participants considered barefoot running to be ‘natural’, they also considered it to be extreme. Minimalist running did not produce such aversive reactions. ‘Support’ reassured against concerns and was seen as central in protecting vulnerable body parts and reducing impact forces, but lacked a common or clear definition. A preference for practical over academic knowledge was found. Anecdotal information was generally trusted, as were running stores with gait assessment, but not health professionals.
Conclusion
People often have inconsistent ideas about barefoot and minimalist running, which are often formed by potentially biased sources, which may lead people to make poor decisions about barefoot and minimalist running. It is important to provide high-quality information to enable better decisions to be made about barefoot and minimalist running.
Statement of contribution
What is already known on this subject?
There is no known work on the psychology behind barefoot and minimalist running. We believe our study is the first qualitative study to have investigated views of this increasingly popular form of running.
What does this study add?
The results suggest that although barefoot running is considered ‘natural’, it is also considered ‘extreme’. Minimalist running, however, did not receive such aversive reactions.
‘Support’ was a common concern among runners. Although ‘support’ reassured against concerns and was seen as central in protecting vulnerable body parts and reducing impact forces, it lacked a common or clear definition.
A preference for practical over academic knowledge was found. Anecdotal information was generally trusted, as were running stores with gait assessment, but not health professionals.