1 resultado para Rotation-invariant feature
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archive of European Integration (17)
- Aston University Research Archive (32)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (98)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (90)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (14)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (58)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (3)
- Digital Repository at Iowa State University (3)
- DigitalCommons@The Texas Medical Center (6)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Glasgow Theses Service (1)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Instituto Politécnico do Porto, Portugal (6)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (10)
- National Center for Biotechnology Information - NCBI (29)
- Publishing Network for Geoscientific & Environmental Data (11)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (91)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (20)
- Universidad de Alicante (12)
- Universidad Politécnica de Madrid (48)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (4)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (6)
- Université de Lausanne, Switzerland (36)
- Université de Montréal, Canada (10)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (3)
- University of Michigan (16)
- University of Queensland eSpace - Australia (70)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper addresses the problem of colorectal tumour segmentation in complex real world imagery. For efficient segmentation, a multi-scale strategy is developed for extracting the potentially cancerous region of interest (ROI) based on colour histograms while searching for the best texture resolution. To achieve better segmentation accuracy, we apply a novel bag-of-visual-words method based on rotation invariant raw statistical features and random projection based l2-norm sparse representation to classify tumour areas in histopathology images. Experimental results on 20 real world digital slides demonstrate that the proposed algorithm results in better recognition accuracy than several state of the art segmentation techniques.