25 resultados para Reversible-jump MCMC
Resumo:
Lights, camera, action! Photoswitchable nucleoside analogues containing o-, m-, or p-azobenzenes can be inserted in the catalytic core of RNA-cleaving 10-23 deoxyribozymes by replacing a nonconserved residue (see picture). Irradiation of the modified deoxyribozymes at 366 nm enhances RNA cleavage rates up to ninefold, thus achieving the rates observed for the unmodified deoxyribozyme.
Resumo:
We report observations of stable, localized, linelike structures in the spatially periodic pattern formed by nematic electroconvection, along which the phase of the pattern jumps by pi. With increasing electric voltage, these lines form a gridlike structure that goes over into a structure indistinguishable from the well-known grid pattern. We present theoretical arguments that suggest that the twisted cell geometry we are using is indirectly stabilizing the phase jump lines, and that the phase jump lines lattice is caused by an interaction of phase jump lines and a zig-zag instability of the surrounding pattern.
Resumo:
All TAP micro-reactor configurations contain inert particles which are used so that the catalyst zone can be maintained under isothermal conditions. Even on
Resumo:
A series of metalloporphyrins of the type M(TMPyP) (where M = Ag(II), Zn(II), Cu(II) and TMPyP = meso-tetrakis(4-N-methylpyridyl)porphyrin) have been investigated in solution and on the surface of silver sols, electrodes, and MELLFs (metal liquidlike films). Similar spectra were recorded on all three surfaces but significant differences in detailed behavior were found. In particular, a novel, reversible, and rapid photoinduced demetalation reaction has been observed for the AgII(TMPyP)/MELLF system. An apparently similar demetalation reaction for the same metalloporphyrin was observed on Ag electrodes but this reversed at a very much slower rate. No demetalation of Ag(II)(TMPyP) was observed with Ag sols nor with any of the other metalloporphyrins at any of the surfaces investigated. The implications of the findings in relation to the nature of the MELLF environment are briefly considered.
Resumo:
A new relative-humidity sensitive ink based on methylene blue and urea is described which can utilise the deliquescent nature of urea.
Resumo:
The preparation and characterisation are described of a robust, reversible, hydrogen peroxide optical sensor, based on the fluorescent quenching of the dye ion-pair [Ru(bpy)(3)(2+)(Ph4B-)(2)], by O-2 produced by the catalytic breakdown of H2O2, utilizing the inorganic catalyst RuO2 center dot xH(2)O. The main feature of this system is the one-pot formulation of a coating ink that, when dried, forms an active single-layer fluorescence-based H2O2 sensor, demonstrably capable of detecting H2O2 over the range of 0.01 to 1 M, with a relative standard deviation of ca. 4% and a calculated lower limit of detection of 0.1 mM. These sensors are sterilisable, using dry-heat, and stable when stored over 40 days, without exhibiting any loss in sensitivity or response characteristics.
Resumo:
The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.