5 resultados para Resonant feedback
Resumo:
Our key contribution is a flexible, automated marking system that adds desirable functionality to existing E-Assessment systems. In our approach, any given E-Assessment system is relegated to a data-collection mechanism, whereas marking and the generation and distribution of personalised per-student feedback is handled separately by our own system. This allows content-rich Microsoft Word feedback documents to be generated and distributed to every student simultaneously according to a per-assessment schedule.
The feedback is adaptive in that it corresponds to the answers given by the student and provides guidance on where they may have gone wrong. It is not limited to simple multiple choice which are the most prescriptive question type offered by most E-Assessment Systems and as such most straightforward to mark consistently and provide individual per-alternative feedback strings. It is also better equipped to handle the use of mathematical symbols and images within the feedback documents which is more flexible than existing E-Assessment systems, which can only handle simple text strings.
As well as MCQs the system reliably and robustly handles Multiple Response, Text Matching and Numeric style questions in a more flexible manner than Questionmark: Perception and other E-Assessment Systems. It can also reliably handle multi-part questions where the response to an earlier question influences the answer to a later one and can adjust both scoring and feedback appropriately.
New question formats can be added at any time provided a corresponding marking method conforming to certain templates can also be programmed. Indeed, any question type for which a programmatic method of marking can be devised may be supported by our system. Furthermore, since the student’s response to each is question is marked programmatically, our system can be set to allow for minor deviations from the correct answer, and if appropriate award partial marks.
Resumo:
Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment", approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.
Resumo:
Background The use of simulation in medical education is increasing, with students taught and assessed using simulated patients and manikins. Medical students at Queen’s University of Belfast are taught advanced life support cardiopulmonary resuscitation as part of the undergraduate curriculum. Teaching and feedback in these skills have been developed in Queen’s University with high-fidelity manikins. This study aimed to evaluate the effectiveness of video compared to verbal feedback in assessment of student cardiopulmonary resuscitation performance Methods Final year students participated in this study using a high-fidelity manikin, in the Clinical Skills Centre, Queen’s University Belfast. Cohort A received verbal feedback only on their performance and cohort B received video feedback only. Video analysis using ‘StudioCode’ software was distributed to students. Each group returned for a second scenario and evaluation 4 weeks later. An assessment tool was created for performance assessment, which included individual skill and global score evaluation. Results One hundred thirty eight final year medical students completed the study. 62 % were female and the mean age was 23.9 years. Students having video feedback had significantly greater improvement in overall scores compared to those receiving verbal feedback (p = 0.006, 95 % CI: 2.8–15.8). Individual skills, including ventilation quality and global score were significantly better with video feedback (p = 0.002 and p < 0.001, respectively) when compared with cohort A. There was a positive change in overall score for cohort B from session one to session two (p < 0.001, 95 % CI: 6.3–15.8) indicating video feedback significantly benefited skill retention. In addition, using video feedback showed a significant improvement in the global score (p < 0.001, 95 % CI: 3.3–7.2) and drug administration timing (p = 0.004, 95 % CI: 0.7–3.8) of cohort B participants, from session one to session two. Conclusions There is increased use of simulation in medicine but a paucity of published data comparing feedback methods in cardiopulmonary resuscitation training. Our study shows the use of video feedback when teaching cardiopulmonary resuscitation is more effective than verbal feedback, and enhances skill retention. This is one of the first studies to demonstrate the benefit of video feedback in cardiopulmonary resuscitation teaching.
Resumo:
PURPOSE:
To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo.
METHODS:
Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film.
RESULTS:
Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion.
CONCLUSIONS:
For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.