3 resultados para Real-world problem
Resumo:
With Tweet volumes reaching 500 million a day, sampling is inevitable for any application using Twitter data. Realizing this, data providers such as Twitter, Gnip and Boardreader license sampled data streams priced in accordance with the sample size. Big Data applications working with sampled data would be interested in working with a large enough sample that is representative of the universal dataset. Previous work focusing on the representativeness issue has considered ensuring the global occurrence rates of key terms, be reliably estimated from the sample. Present technology allows sample size estimation in accordance with probabilistic bounds on occurrence rates for the case of uniform random sampling. In this paper, we consider the problem of further improving sample size estimates by leveraging stratification in Twitter data. We analyze our estimates through an extensive study using simulations and real-world data, establishing the superiority of our method over uniform random sampling. Our work provides the technical know-how for data providers to expand their portfolio to include stratified sampled datasets, whereas applications are benefited by being able to monitor more topics/events at the same data and computing cost.
Resumo:
This paper addresses the problem of colorectal tumour segmentation in complex real world imagery. For efficient segmentation, a multi-scale strategy is developed for extracting the potentially cancerous region of interest (ROI) based on colour histograms while searching for the best texture resolution. To achieve better segmentation accuracy, we apply a novel bag-of-visual-words method based on rotation invariant raw statistical features and random projection based l2-norm sparse representation to classify tumour areas in histopathology images. Experimental results on 20 real world digital slides demonstrate that the proposed algorithm results in better recognition accuracy than several state of the art segmentation techniques.
Resumo:
Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance.