343 resultados para Rat Hepatic-fibrosis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thioacetamide (TAA) administration is an established technique for generating rat models of liver fibrosis and cirrhosis. Oxidative stress is believed to be involved as TAA-induced liver fibrosis is initiated by thioacetamide S-oxide, which is derived from the biotransformation of TAA by the microsomal flavine-adenine dinucleotide (FAD)-containing monooxygense (FMO) and cytochrome P450 systems. A two-dimensional gel electrophoresis-mass spectrometry approach was applied to analyze the protein profiles of livers of rats administered with sublethal doses of TAA for 3, 6 and 10 weeks respectively. With this approach, 59 protein spots whose expression levels changed significantly upon TAA administration were identified, including three novel proteins. These proteins were then sorted according to their common biochemical properties and functions, so that pathways involved in the pathogenesis of rat liver fibrosis due to TAA-induced toxicity could be elucidated. As a result, it was found that TAA-administration down-regulated the enzymes of the primary metabolic pathways such as fatty acid beta-oxidation, branched chain amino acids and methionine breakdown. This phenomenon is suggestive of the depletion of succinyl-CoA which affects heme and iron metabolism. Up-regulated proteins, on the other hand, are related to oxidative stress and lipid peroxidation. Finally, these proteomics data and the data obtained from the scientific literature were integrated into an

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 1B1 (CYP1B1) mRNA is constitutively expressed in most normal extra-hepatic tissues; however the protein is not detectable in these tissues but is expressed in a wide variety of tumors. CYP1B1 is responsible for the activation of a number of carcinogens present in tobacco smoke and food. A surgical model of rat esophageal tumorigenesis, promoted by gastric or duodenal reflux was used to determine CYP1B1 expression in premalignant esophageal tissue. Immunohistochemistry was performed using a modified amplified fluorescein tyramide protocol. CYP1B1 was not observed in normal esophageal mucosa, submucosa, or muscularis mucosa. Animals exposed to gastric reflux developed mild hyperplasia. Varying degrees of hyperplasia were observed in the duodenal reflux group. All regions of hyperplasia showed moderate or strong CYP1B1 immunoreactivity. Duodenal reflux induced a small number of premalignant changes: immunoreactivity was absent from the epithelium of squamous dysplasia (0/10), Barrett's esophagus (0/7), and majority of dysplastic Barrett's esophagus (1/4). Moderate or strong immunoreactivity was observed in the majority (7/8) of squamous cell carcinomas (SCCs) in situ. Immunoreactivity was also observed in the lamina propria and submucosa in association with inflammation, regardless of the severity of inflammation. The expression of CYP1B1 in hyperplasia, SCCs in situ, or in association with inflammation may increase the production of carcinogenic metabolites, which may promote esophageal tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated, using the single-pass isolated perfused rat liver preparation, whether the centrilobular location of hepatic oxidative drug metabolism could be a contributing factor to the marked sensitivity of drug oxidation to hypoxia. Livers (N = 7) were each perfused for 130 min with 2 micrograms/mL (+)-propranolol, a drug metabolized almost entirely by oxidation in the rat. The direction of flow was reversed after 60 min, the order of flow direction being randomized. Normal oxygenation was used during the first 30 min of antegrade and of retrograde perfusion, but in the second 30 min perfusate was equilibrated with a N2/O2 mixture designed to reduce hepatic oxygen delivery by half. During normal oxygenation there was no significant difference between antegrade and retrograde perfusion in hepatic oxygen delivery and physiological parameters such as oxygen consumption and extraction, perfusion pressure and bile flow. During hypoxia, mean oxygen delivery was slightly lower with retrograde perfusion (retrograde: mean = 2.37 mumol/min/g liver, range = 1.56-3.17; antegrade: mean = 2.90 mumol/min/g liver, range = 1.96-4.08; P = 0.04), but there was no significant difference in physiological parameters within each liver (P > 0.05). Propranolol clearance during normal oxygenation was similar to the perfusion rate (10 mL/min) and was the same for both directions of perfusion (antegrade 9.88 +/- 0.07 mL/min, retrograde 9.88 +/- 0.13 mL/min, P > 0.05). Hypoxia reduced propranolol clearance substantially, but the decrease was significantly greater with antegrade perfusion (5.65 +/- 1.89 mL/min) than with retrograde perfusion (6.76 +/- 1.95 mL/min, P = 0.014). Oxidative drug metabolism is located primarily in the centrilobular zone and sinusoidal oxygen concentration is lowest in the "downstream" zone with both antegrade and retrograde perfusion. These findings suggest that the centrilobular location of propranolol metabolism may influence the effect of hypoxia on propranolol elimination, but is not a major contributor to the marked sensitivity of propranolol elimination to hypoxia antegrade perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The development of heart failure is associated with changes in the size, shape, and structure of the heart that has a negative impact on cardiac function. These pathological changes involve excessive extracellular matrix deposition within the myocardial interstitium and myocyte hypertrophy. Alterations in fibroblast phenotype and myocyte activity are associated with reprogramming of gene transcriptional profiles that likely requires epigenetic alterations in chromatin structure. The aim of our work was to investigate the potential of a currently licensed anticancer epigenetic modifier as a treatment option for cardiac diseases associated with hypertension-induced cardiac hypertrophy and fibrosis.

METHODS AND RESULTS: The effects of DNA methylation inhibition with 5-azacytidine (5-aza) were examined in a human primary fibroblast cell line and in a spontaneously hypertensive rat (SHR) model. The results from this work allude to novel in vivo antifibrotic and antihypertrophic actions of 5-aza. Administration of the DNA methylation inhibitor significantly improved several echocardiographic parameters associated with hypertrophy and diastolic dysfunction. Myocardial collagen levels and myocyte size were reduced in 5-aza-treated SHRs. These findings are supported by beneficial in vitro effects in cardiac fibroblasts. Collagen I, collagen III, and α-smooth muscle actin were reduced in a human ventricular cardiac fibroblast cell line treated with 5-aza.

CONCLUSION: These findings suggest a role for epigenetic modifications in contributing to the profibrotic and hypertrophic changes evident during disease progression. Therapeutic intervention with 5-aza demonstrated favorable effects highlighting the potential use of this epigenetic modifier as a treatment option for cardiac pathologies associated with hypertrophy and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chiral gas chromatographic assay has been developed for quantitative analysis of ethosuximide and its major metabolites in rat urine. The extraction procedure was found to be precise and reproducible. Recovery was in the range of 94-98%, intraday CV(%) was 0.92% for (S)-ethosuximide (50 mug/ml) and 0.51% for (R)-ethosuximide (50 mug/ml). Interday CV(%) was 1.12% for (S)-ethosuximide and 0.72% for (R)-ethosuximide. The limit of detection was determined to be around 0.01 mug/ml for each enantiomer. Following administration of rac-ethosuximide by i.v., i.p. and oral routes, unchanged ethosuximide was detected in urine up to 72h after drug administration. The appearance of all detected metabolites occurred Within 24h of drug administration. Significantly more (S)-ethosuximide was excreted unchanged than (R)-ethosuximide with all three routes studied. A substantial amount of the drug was eliminated as the 2-(1-hydroxyethyl)-2-methylsuccinimide (2 pairs of diastereoisomers). Much less drug was eliminated as the 2-ethyl-3-hydroxy-2-methylsuccinimide with only one diastereoisomer observed. Examination of the one pair of diastereoisomers of 2-(1-hydroxyethyl)-2-methylsuccinimide that was resolved showed preferential excretion of one isomer. Comparison of both pairs of diastereoisomers showed that one pair was formed in preference to the other with a ratio of approximately 0.8:1. It is concluded that stereoselective metabolism of ethosuximide occurs. Copyright (C) 2001 John Wiley & Sons, Ltd. Author Keywords: chiral pharmacokinetics; ethosuximide enantiomers; metabolism; rat; urinary excretion; gas chromatography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity of the immediate early gene c-fos was compared across hemispheres in rats with unilateral anterior thalamic lesions. Fos protein was quantified after rats performed a spatial working memory test in the radial-arm maze, a task that is sensitive to bilateral lesions of the anterior thalamic nuclei. Unilateral anterior thalamic lesions produced evidence of a widespread hippocampal hypoactivity, as there were significant reductions in Fos counts in a range of regions within the ipsilateral hippocampal formation (rostral CA1, rostral dentate gyrus, 'dorsal' hippocampus, presubiculum and postsubiculum). A decrease in Fos levels was also found in the rostral and caudal retrosplenial cortex but not in the parahippocampal cortices or anterior cingulate cortices. The Fos changes seem most closely linked to sites that are also required for successful task performance, supporting the notion that the anterior thalamus, retrosplenial cortex and hippocampus form key components of an interdependent neuronal network involved in spatial mnemonic processing.