11 resultados para Power Line Detection
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
Large scale wind power generation complicated with restrictions on the tie line plans may lead to significant wind power curtailment and deep cycling of coal units during the valley load periods. This study proposes a dispatch strategy for interconnected wind-coal intensive power systems (WCISs). Wind power curtailment and cycling of coal units are included in the economic dispatch analysis of regional systems. Based on the day-ahead dispatch results, a tie line power plan adjustment strategy is implemented in the event of wind power curtailment or deep cycling occurring in the economic dispatch model, with the objective of reducing such effects. The dispatch strategy is designed based on the distinctive operation characteristics of interconnected WCISs, and dispatch results for regional systems in China show that the proposed strategy is feasible and can improve the overall system operation performance.
Resumo:
Major food adulteration and contamination events occur with alarming regularity and are known to be episodic, with the question being not if but when another large-scale food safety/integrity incident will occur. Indeed, the challenges of maintaining food security are now internationally recognised. The ever increasing scale and complexity of food supply networks can lead to them becoming significantly more vulnerable to fraud and contamination, and potentially dysfunctional. This can make the task of deciding which analytical methods are more suitable to collect and analyse (bio)chemical data within complex food supply chains, at targeted points of vulnerability, that much more challenging. It is evident that those working within and associated with the food industry are seeking rapid, user-friendly methods to detect food fraud and contamination, and rapid/high-throughput screening methods for the analysis of food in general. In addition to being robust and reproducible, these methods should be portable and ideally handheld and/or remote sensor devices, that can be taken to or be positioned on/at-line at points of vulnerability along complex food supply networks and require a minimum amount of background training to acquire information rich data rapidly (ergo point-and-shoot). Here we briefly discuss a range of spectrometry and spectroscopy based approaches, many of which are commercially available, as well as other methods currently under development. We discuss a future perspective of how this range of detection methods in the growing sensor portfolio, along with developments in computational and information sciences such as predictive computing and the Internet of Things, will together form systems- and technology-based approaches that significantly reduce the areas of vulnerability to food crime within food supply chains. As food fraud is a problem of systems and therefore requires systems level solutions and thinking.
Resumo:
Context: The stellar population of the 30 Doradus star-forming region in the Large Magellanic Cloud contains a subset of apparently single, rapidly rotating O-type stars. The physical processes leading to the formation of this cohort are currently uncertain.
Aims: One member of this group, the late O-type star VFTS 399, is found to be unexpectedly X-ray bright for its bolometric luminosity-in this study we aim to determine its physical nature and the cause of this behaviour.
Methods: To accomplish this we performed a time-resolved analysis of optical, infrared and X-ray observations.
Results: We found VFTS 399 to be an aperiodic photometric variable with an apparent near-IR excess. Its optical spectrum demonstrates complex emission profiles in the lower Balmer series and select He i lines-taken together these suggest an OeBe classification. The highly variable X-ray luminosity is too great to be produced by a single star, while the hard, non-thermal nature suggests the presence of an accreting relativistic companion. Finally, the detection of periodic modulation of the X-ray lightcurve is most naturally explained under the assumption that the accretor is a neutron star.
Conclusions: VFTS 399 appears to be the first high-mass X-ray binary identified within 30 Dor, sharing many observational characteristics with classical Be X-ray binaries. Comparison of the current properties of VFTS 399 to binary-evolution models suggests a progenitor mass 25 M⊙ for the putative neutron star, which may host a magnetic field comparable in strength to those of magnetars. VFTS 399 is now the second member of the cohort of rapidly rotating "single" O-type stars in 30 Dor to show evidence of binary interaction resulting in spin-up, suggesting that this may be a viable evolutionary pathway for the formation of a subset of this stellar population.
Resumo:
Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, Ca ii K, and Hα filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.
Resumo:
AIMS: Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. METHODS: 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. RESULTS: Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p
Resumo:
This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.
Resumo:
Emerging cybersecurity vulnerabilities in supervisory control and data acquisition (SCADA) systems are becoming urgent engineering issues for modern substations. This paper proposes a novel intrusion detection system (IDS) tailored for cybersecurity of IEC 61850 based substations. The proposed IDS integrates physical knowledge, protocol specifications and logical behaviours to provide a comprehensive and effective solution that is able to mitigate various cyberattacks. The proposed approach comprises access control detection, protocol whitelisting, model-based detection, and multi-parameter based detection. This SCADA-specific IDS is implemented and validated using a comprehensive and realistic cyber-physical test-bed and data from a real 500kV smart substation.
Resumo:
We have observed a quiet Sun region with the Swedish 1-meter Solar Telescope (SST) equipped with CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, H-alpha line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period-bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as "magnetic shadows". These also show enhanced power close to the photosphere, traditionally referred to as"power halos". The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore if small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs) and Rapid Redshifted Excursions (RREs), can strongly influence the power-maps. The short and finite lifetime of these events strongly affects all powermaps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously, can have a dominant effect on the formation ofthe power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect in the power suppression around 3 minutes and wave interaction may play a key role here. Our high cadence observations reveal that flows, waves and shocks manifest in presence of magnetic fields to form a non-linear magnetohydrodynamic system.