14 resultados para Polymer Optical Fibers


Relevância:

100.00% 100.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present surface enhanced Raman optical activity (SEROA), as well as Raman, SERS and ROA, spectra of D- and L-ribose. By employing a gel forming polyacrylic acid to control colloid aggregation and associated birefringent artefacts we observe the first definitive proof of SEROA through measurement of mirror image bands for the two enantiomers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A homologous family of dialkyl phthalates has been used to investigate the effect of plasticizer/polymer compatibility on the response characteristics of transparent, plastic, thin optical gas sensing films for CO2 and oxygen. Plasticizer/polymer compatibilities were determined through the value of the difference in solubility parameter, i.e. Delta delta, for the plasticizer and polymer with a Delta delta value of zero indicating high compatibility. A strong correlation was found between plasticizer/polymer compatibility and sensitivity in phenol red/ethyl cellulose CO2-sensitive films and this relationship extended to CO2-sensitive films based on other polymers such as polystyrene and poly(methyl methacrylate). It extended also to optical O-2-sensitive films implying that the relationship is general for thin-film optical sensors. Other results from the CO2-sensitive films in different polymers indicated that the film sensitivity is largely independent of the polymer matrix regardless of its inherent gas permeability, when a sufficient quantity of compatible plasticizer is present. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optical transmission through periodically nanostructured metal films (surface-plasmon polaritonic crystals) has been studied. The surface polaritonic crystals have been coated with a nonlinear polymer. The optical transmission of such nanostructures has been shown to depend on the control-light illumination conditions. The resonant transmission exhibits bistable behavior with the control-light intensity. The bistability is different at different resonant signal wavelengths and for different wavelengths of the control light. The effect is explained by the strong sensitivity of the surface-plasmon mode resonances at the signal wavelength to the surrounding dielectric environment and the electromagnetic field enhancement due to plasmonic excitations at the controlled light wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disguising a metal complex as a micelle by using amphiphilic phosphine ligands enables it to switch between a coordination polymer and a discrete cage in response to solvent polarity or pH; this medium-dependent behaviour of the complex is rational because it parallels that of true micelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed optical fiber sensor based on Brillouin scattering (BOTDR or BOTDA) can measure and monitor strain and temperature generated along optical fiber. Because it can measure in real-time with high precision and stability, it is quite suitable for health monitoring of large-scale civil infrastructures. However, the main challenge of applying it to structural health monitoring is to ensure it is robust and can be repaired by adopting a suitable embedding method. In this paper, a novel method based on air-blowing and vacuum grouting techniques for embedding long-distance optical fiber sensors was developed. This method had no interference with normal concrete construction during its installation, and it could easily replace the long-distance embedded optical fiber sensor (LEOFS). Two stages of static loading tests were applied to investigate the performance of the LEOFS. The precision and the repeatability of the LEOFS were studied through an overloading test. The durability and the stability of the LEOFS were confirmed by a corrosion test. The strains of the LEOFS were used to evaluate the reinforcing effect of carbon fiber reinforced polymer and thereby the health state of the beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quenching of the electronically-excited, lumophoric state of [Ru(bpy)(3)(2+)(Ph4B-)(2)] by oxygen is studied in a wide variety of neat plasticizers. The Stern-Volmer constant, K-SV, is found to be inversely dependent upon the viscosity of the quenching medium, although the natural lifetime of the electronically excited state of [RU(bPY)(3)(2+)(Ph4B-)(2)] is largely independent of medium. The least viscous of the plasticizers tested, triethyl phosphate, did not, however, produce highly sensitive optical oxygen sensors when used to plasticize [RU(bPY)(3)(2+)(Ph4B-)(2)]-containing cellulose acetate butyrate (CAB) and poly(methyl methacrylate) (PMMA) films, Instead, the compatibility of the polymer-plasticizer combination, as measured by the difference in the values of the solubility parameter of the two, appears to be a major factor in determining the overall oxygen sensitivity of the thin plastic films. For highly compatible polymer-plasticizer combinations, the plasticizer with the lowest viscosity produces films of the highest oxygen sensitivity. This situation arises because in the film the quenching process is partly diffusion-controlled and, as a result, the quenching rate constant is inversely proportional to the effective viscosity of the reaction medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer extrusion is fundamental to the processing of polymeric materials and melt flow temperature homogeneity is a major factor which influences product quality. Undesirable thermal conditions can cause problems such as melt degradation, dimensional instability, weaknesses in mechanical/optical/geometrical properties, and so forth. It has been revealed that melt temperature varies with time and with radial position across the die. However, the majority of polymer processes use only single-point techniques whose thermal measurements are limited to the single point at which they are fixed. Therefore, it is impossible for such techniques to determine thermal homogeneity across the melt flow. In this work, an extensive investigation was carried out into melt flow thermal behavior of the output of a single extruder with different polymers and screw geometries over a wide range of processing conditions. Melt temperature profiles of the process output were observed using a thermocouple mesh placed in the flow and results confirmed that the melt flow thermal behavior is different at different radial positions. The uniformity of temperature across the melt flow deteriorated considerably with increase in screw rotational speed while it was also shown to be dependent on process settings, screw geometry, and material properties. Moreover, it appears that the effects of the material, machine, and process settings on the quantity and quality of the process output are heavily coupled with each other and this may cause the process to be difficult to predict and variable in nature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of Janus fibers using a new side-by-side electrospinning process is reported. By manipulating the angle between the two ports of the spinneret emitting the working fluids, Janus nanofibers with tunable structures in terms of width, interfacial area and also volume of each side can be easily fabricated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low cost flat plate solar collector was developed by using polymeric components as opposed to metal and glass components of traditional flat plate solar collectors. In order to improve the thermal and optical properties of the polymer absorber of the solar collector, Carbon Nanotubes (CNT) were added as a filler. The solar collector was designed as a multi-layer construction with an emphasis on low manufacturing costs. Through the mathematical heat transfer analysis, the thermal performance of the collector and the characteristics of the design parameters were analyzed. Furthermore, the prototypes of the proposed collector were built and tested at a state-of-the-art solar simulator facility to evaluate its actual performance. The inclusion of CNT improved significantly the properties of the polymer absorber. The key design parameters and their effects on the thermal performance were identified via the heat transfer analysis. Based on the experimental and analytical results, the cost-effective polymer-CNT solar collector, which achieved a high thermal efficiency similar to that of a conventional glazed flat plate solar panel, was successfully developed.