162 resultados para Polarized Epithelial-cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammary epithelial cells cultured on a concentrated laminin-rich extracellular matrix formed 3D acinar structures that matured to polarized monolayers surrounding a lumen. In the absence of glucocorticoids mature acinus formation failed and the expression of an acinus-associated, activator protein 1 (AP1) and nuclear factor kappaB transcription factor DNA-binding profile was lost. Treatment with the JNK inhibitor, SP600125, caused similar effects, whereas normal organization of the mammary epithelial cells as acini caused JNK activation in a glucocorticoid-dependent manner. The forming acini expressed BRCA1, GADD45beta, MEKK4, and the JNK activating complex GADD 45beta-MEKK4 in a glucocorticoid-dependent fashion. JNK catalyzed phosphorylation of c-Jun was also detected in the acini. In addition, expression of beta4 integrin and in situ occupation of its promoter by AP1 components, c-Jun and Fos, was glucocorticoid dependent. These results suggest that glucocortocoid signaling regulates acinar integrity through a pathway involving JNK regulation of AP1 transcription factors and beta4 integrin expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is associated with oxidative stress and increased levels of inflammatory cytokines. The aim of the study was to assess the effects of inflammatory cytokines and oxidative stress associated with raised glucose levels on inducible nitric oxide synthase (iNOS) promoter activity in intestinal epithelial cells. High glucose (25 mmol/l) conditions reduced glutathione (GSH) levels in the human intestinal epithelial cell line, DLD-1. Addition of the antioxidant alpha-lipoic acid resulted in the restoration of GSH levels to normal. Upregulation of basal iNOS promoter activity was observed when cells were incubated in high glucose alone. This effect was significantly reduced by the addition of the antioxidant, alpha-lipoic acid and completely blocked with inhibition of NFkappa B activity. Cytokine stimulation [interleukin-1 beta, tumor necrosis factor-alpha, interferon-gamma] induced iNOS promoter activity in all conditions and this was accompanied by an increase in nitric oxide (NO) production. Inhibition of NFkappa-B activity decreased but did not completely inhibit cytokine-induced iNOS promoter activity and subsequent NO production. In conclusion, high glucose-induced iNOS promoter activity is mediated in part through intracellular GSH and NFkappa-B.