30 resultados para Ontiveros, Silvia
Resumo:
Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.
Resumo:
Using a conditional mutagenesis strategy we demonstrate here that a gene cluster encoding putative aminoarabinose (Ara4N) biosynthesis enzymes is essential for the viability of Burkholderia cenocepacia. Loss of viability is associated with dramatic changes in bacterial cell morphology and ultrastructure, increased permeability to propidium iodide, and sensitivity to sodium dodecyl sulfate, suggesting a general cell envelope defect caused by the lack of Ara4N.
Resumo:
Scanning of bacterial genomes to identify essential genes is of biological interest, for understanding the basic functions required for life, and of practical interest, for the identification of novel targets for new antimicrobial therapies. In particular, the lack of efficacious antimicrobial treatments for infections caused by the Burkholderia cepacia complex is causing high morbidity and mortality of cystic fibrosis patients and of patients with nosocomial infections. Here, we present a method based on delivery of the tightly regulated rhamnose-inducible promoter P(rhaB) for identifying essential genes and operons in Burkholderia cenocepacia. We demonstrate that different levels of gene expression can be achieved by using two vectors that deliver P(rhaB) at two different distances from the site of insertion. One of these vectors places P(rhaB) at the site of transposon insertion, while the other incorporates the enhanced green fluorescent protein gene (e-gfp) downstream from P(rhaB). This system allows us to identify essential genes and operons in B. cenocepacia and provides a new tool for systematically identifying and functionally characterizing essential genes at the genomic level.
Resumo:
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.
Resumo:
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.
Resumo:
Infection of the respiratory tract caused by Burkholderia cepacia complex poses a serious risk for cystic fibrosis (CF) patients due to the high morbidity and mortality associated with the chronic infection and the lack of efficacious antimicrobial treatments. A detailed understanding of the pathogenicity of B. cepacia complex infections is hampered in part by the limited availability of genetic tools and the inherent resistance of these isolates to the most common antibiotics used for genetic selection. In this study, we report the construction of an expression vector which uses the rhamnose-regulated P(rhaB) promoter of Escherichia coli. The functionality of the vector was assessed by expressing the enhanced green fluorescent protein (eGFP) gene (e-gfp) and determining the levels of fluorescence emission. These experiments demonstrated that P(rhaB) is responsive to low concentrations of rhamnose and it can be effectively repressed with 0.2% glucose. We also demonstrate that the tight regulation of gene expression by P(rhaB) promoter allows us to extend the capabilities of this vector to the identification of essential genes.
Resumo:
Burkholderia are microorganisms that have a unique ability to adapt and survive in many different environments. They can also serve as biopesticides and be used for the biodegradation of organic compounds. Usually harmless while living in the soil, these bacteria are opportunistic pathogens of plants and immunocompromised patients, and occasionally infect healthy individuals. Some of the species in this genus can also be utilised as biological weapons. They all possess very large genomes and have two or more circular chromosomes. Their survival and persistence, not only in the environment but also in host cells, offers a remarkable example of bacterial adaptation.
Resumo:
Since the late 1980s, there has been a significant and progressive movement away from the traditional Public Administration (PA) systems, in favour of NPM-type accounting tools and ideas inspired by the private sector. More recently, a new focus on governance systems, under the banner Public Governance (PG), has emerged. In this paper it is argued that reforms are not isolated events, but are embedded in more global discourses of modernisation and influenced by the institutional pressures present in a certain field at certain points in time. Using extensive document analysis in three countries with different administrative regimes (the UK, Italy and Austria), we examine public sector accounting and budgeting reforms and the underlying discourses put forward in order to support the change. We investigate the extent to which the actual content of the reforms and the discourses they are embedded within are connected over time; that is, whether, and to what degree, the reform “talk” matches the “decisions”. The research shows that in both the UK and in Italy there is consistency between the debates and the decided changes, although the dominant discourse in each country differs, while in Austria changes are decided gradually, and only after they have been announced well in advance in the political debate. We find that in all three countries the new ideas and concepts layer and sediment above the existing ones, rather than replace them. Although all three countries underwent similar accounting and budgeting reforms and relied on similar institutional discourses, each made its own specific translation of the ideas and concepts and is characterised by a specific formation of sedimentations. In addition, the findings suggest that, at present in the three countries, the PG discourse is used to supplement, rather than supplant, other prevailing discourses.
Resumo:
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P?=?1.2×10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P?=?2.0×10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P?=?2.1×10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Resumo:
In two experiments, we tested some of the central claims of the empathizing-systemizing (E-S) theory. Experiment 1 showed that the systemizing quotient (SQ) was unrelated to performance on a mathematics test, although it was correlated with statistics-related attitudes, self-efficacy, and anxiety. In Experiment 2, systemizing skills, and gender differences in these skills, were more strongly related to spatial thinking styles than to SQ. In fact, when we partialled the effect of spatial thinking styles, SQ was no longer related to systemizing skills. Additionally, there was no relationship between the Autism Spectrum Quotient (AQ) and the SQ, or skills and interest in mathematics and mechanical reasoning. We discuss the implications of our findings for the E-S theory, and for understanding the autistic cognitive profile.